Transformation of biochar from plant biomass in soil: evaluation by isotopic labelling method
- Authors: Galitskaya P.Y.1, Selivanovskaya S.Y.1, Karamova K.O.1, Gordeev A.S.1, Kuryntseva P.A.1, Ghorbannezhad P.2
-
Affiliations:
- Kazan Federal University
- Shahid Beheshti University
- Issue: No 10 (2024)
- Pages: 1317-1329
- Section: SOIL CHEMISTRY
- URL: https://kld-journal.fedlab.ru/0032-180X/article/view/682596
- DOI: https://doi.org/10.31857/S0032180X24100035
- EDN: https://elibrary.ru/JYCPYM
- ID: 682596
Cite item
Abstract
Pyrolysis is considered as one of the promising methods for processing agricultural waste and producing fertilizers. The effectiveness of the resulting biochar as a fertilizer has been proven, but to this day questions remain open about the preferential ways of decomposition of organic substances in its composition – biotic or abiotic. In this work, the transformation pathways of biochar made from corn – a plant with the C4 type of photosynthesis (with an increased content of 13C) – were assessed using the solid-phase CP/MAS 13C NMR spectroscopy method. The biochar was placed in the top layer of a soil monolith of gray forest soil, and for 90 days the precipitation regime characteristic of central Russia was simulated. In the obtained NMR spectra of soil samples with biochar, the peak at 129 ppm, characteristic of aromatic compounds, increased with the time of the experiment in the upper soil layer, but not in other layers. This suggests that biochar particles do not migrate down the soil profile during one season. At the same time, the intensity of cumulative microbial respiration in the presence of biochar increased – from 85.0 g CO2 kg–1 in the control sample to 201.4 g CO2 kg–1 in the sample with biochar (top soil layer). According to the NMR spectra of the salt formed during the mineralization of carbon dioxide released from the soil, it contains labeled carbon: the spectra have a peak at 169 ppm, characteristic of carbonates. The cumulative volume of CO2 released from the soil with biochar was 1.9 times greater than from the control soil. The addition of decomposer microorganisms led to an additional increase in the volume of CO2 – 2.4 times relative to the control, which indicates the role of microorganisms in the destruction of soil organic matter and biochar. However, based on the stability of the total carbon content in the soil, it can be concluded that only a small proportion of biochar components is susceptible to biotic decomposition.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
P. Yu. Galitskaya
Kazan Federal University
Email: drgor@mail.ru
ORCID iD: 0000-0002-5070-786X
Russian Federation, Kazan, 420008
S. Yu. Selivanovskaya
Kazan Federal University
Email: drgor@mail.ru
ORCID iD: 0000-0001-6379-7166
Russian Federation, Kazan, 420008
K. O. Karamova
Kazan Federal University
Email: drgor@mail.ru
ORCID iD: 0000-0003-0846-251X
Russian Federation, Kazan, 420008
A. S. Gordeev
Kazan Federal University
Author for correspondence.
Email: drgor@mail.ru
ORCID iD: 0000-0002-1918-305X
Kazan, 420008
P. A. Kuryntseva
Kazan Federal University
Email: drgor@mail.ru
ORCID iD: 0000-0002-9274-7077
Russian Federation, Kazan, 420008
P. Ghorbannezhad
Shahid Beheshti University
Email: drgor@mail.ru
ORCID iD: 0000-0002-6146-8964
Iran, Islamic Republic of, Tehran, 198396
References
- Ермолаев О.П. Ландшафты Республики Татарстан. Региональный ланшафтно-экологический анализ. Казань: Слово, 2007. 411 c.
- Ameloot N., Graber E.R., Verheijen F.G.A., De Neve S. Interactions between biochar stability and soil organisms: review and research needs // Eur. J Soil Sci. 2013. V. 4(64). P. 379–390.
- Ascough P.L., Bird M.I., Wormald P., Snape C.E., Apperley D. Influence of production variables and starting material on charcoal stable isotopic and molecular characteristics // GCA. 2008. V. 72(24). P. 6090–6102.
- Banfield C.C., Dippold M.A., Pausch J., Hoang D.T.T., Kuzyakov Y. Biopore history determines the microbial community composition in subsoil hotspots // Biol. Fert. Soils. 2017. V. 5(53). P. 573–588.
- Blume E., Bischoff M., Reichert J.M., Moorman T., Konopka A., Turco R.F. Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season // Appl. Soil. Ecol. 2002. V. 3(20). P. 171–181.
- Bogusz A., Oleszczuk P., Dobrowolski R. Adsorption and desorption of heavy metals by the sewage sludge and biochar-amended soil // Environ. Geochem. Health. 2019. V. 41. P. 1663–1674.
- Cimò G., Kucerik J., Berns A.E., Schaumann G.E., Alonzo G., Conte P. Effect of heating time and temperature on the chemical characteristics of biochar from poultry manure // J. Agric. Food Chem. 2014. V. 62(8), P. 1912–1918.
- Clough T., Condron L.M., Kammann C, Müller C. A Review of Biochar and Soil Nitrogen Dynamics // Agron. 2013. V. 2(3). P. 275–293.
- Czimczik C.I., Preston C.M., Schmidt M.W.I., Werner R.A., Schulze E-D. Effects of charring on mass, organic carbon, and stable carbon isotope composition of wood // Org. Geochem. 2002. V. 11(33). P. 1207–1223.
- Ding Y., Liu Y., Liu S., Huang X., Li Z., Tan X., Zeng G., Zhou L. Potential benefits of biochar in agricultural soils: a review // Pedosphere. 2017. V. 4(27). P. 645–661.
- Dong X., Li G., Lin Q., Zhao X. Quantity and quality changes of biochar aged for 5 years in soil under field conditions // Catena. 2017. V. 159. P. 136–143.
- Farrell M., Kuhn T.K., Macdonald L.M., Maddern T.M., Murphy D.V., Hall P.A., Singh B.P., Baumann K., Krull E.S., Baldock J.A. Microbial utilisation of biochar-derived carbon // Sci. Total Environ. 2013. V. 465. P. 288–297.
- Freitas J.C.C., Bonagamba T.J., Emmerich F.G. 13 C High-Resolution Solid-State NMR Study of Peat Carbonization // Energ Fuel. 1999. V. 1(13). P. 53–59.
- Geisseler D., Horwath W.R. Relationship between carbon and nitrogen availability and extracellular enzyme activities in soil // Pedobiologia. 2009. V. 1(53). P. 87–98.
- Glaser B. Compound-specific stable-isotope(δ13C) analysis in soil science // J Plant. Nutr. Soil Sci. 2005. V. 168(5). P. 633–648.
- Gougoulias C., Clark J.M., Shaw L.J. The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems // J Sci. Food Agric. 2014. V. 12(94). P. 2362–2371.
- Hagemann N., Subdiaga E., Orsetti S., de la Rosa J.M., Knicker H., Schmidt H-P., Kappler A., Behrens S. Effect of biochar amendment on compost organic matter composition following aerobic compositing of manure // Sci Total Environ. 2018. V. 613-614. P. 20–29.
- Hui D., Yu C-L., Deng Q., Saini P., Collins K., De Koff J. Weak Effects of Biochar and Nitrogen Fertilization on Switchgrass Photosynthesis, Biomass, and Soil Respiration // Agriculture. 2018. V. 9(8). P. 143.
- Jaafar N.M., Clode P.L., Abbott L.K. Biochar-Soil Interactions in Four Agricultural Soils // Pedosphere. 2015. V. 5(25). P. 729–736.
- Jagadamma S. Mayes M.A., Steinweg J. M., Schaeffer S. M. Substrate quality alters the microbial mineralization of added substrate and soil organic carbon // Biogeosciences. 2014. V. 17(11). P. 4665–4678.
- Jeguirim M., Limousy L. Biomass Chars: Elaboration, Characterization and Applications II // Energies. 2019. V. 3(12). P. 384.
- Kida M., Kondo M., Tomotsune M., Kinjo K., Ohtsuka T., Fujitake N. Molecular composition and decomposition stages of organic matter in a mangrove mineral soil with time // Estuar. Coast. Shelf Sci. 2019. V. 231, P. 106478.
- Kirk G.J.D., Yu T.R., Choudhury F.A. Phosphorus chemistry in relation to water regime. // Phosphorus requirements for sustainable agriculture in Asia and Oceania. Proceedings of a symposium, 6–10 March 1989. 1990. P. 211–223.
- Knicker H. Pyrogenic organic matter in soil: Its origin and occurrence, its chemistry and survival in soil environments // Quat. Int. 2011. V. 2(243). P. 251–263.
- Kochanek J., Soo R.M., Martinez C., Dakuidreketi A., Mudge A.M. Biochar for intensification of plant-related industries to meet productivity, sustainability and economic goals: A review // Resour. Conserv. Recycl. 2022. V. 179. P. 106109.
- Kuzyakov Y., Subbotina I., Chen H., Bogomolova I., Xu X. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling // Soil Biol. Biochem. 2009. V. 2(41). P. 210–219.
- Kuzyakov Y., Blagodatskaya E. Microbial hotspots and hot moments in soil: Concept review // Soil Biol. Biochem. 2015. V. 83. P. 184–199.
- Kuzyakov Y., Bogomolova I., Glaser B. Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis // Soil Biol. Biochem. 2014. V. 70. P. 229–236.
- Lawrinenko M., Laird D.A., Johnson R.L., Jing D. Accelerated aging of biochars: Impact on anion exchange capacity // Carbon. 2016. V. 1 03. P. 217–227.
- Li X., Wang T., Chang S.X., Jiang X., Song Y. Biochar increases soil microbial biomass but has variable effects on microbial diversity: A meta-analysis // Sci.Total Environ. 2020. V. 749. P. 141593.
- Liu X., Liao J., Song H., Yang Y., Guan C., Zhang Z. A biochar-based route for environmentally friendly controlled release of nitrogen: urea-loaded biochar and bentonite composite // Scientific Reports. 2019. V. 9. P. 9548.
- Lu N., Lu X-R., Du Z., Wang Y-D. Effect of biochar on soil respiration in the maize growing season after 5 years of consecutive application // Soil Res. 2014. V. 5(52). C. 505.
- Marcińczyk M., Oleszczuk P. Biochar and engineered biochar as slow- and controlled-release fertilizers // J Clean. Prod. 2022. V. 339. P. 130685.
- McBeath A.V., Smernik R.J. Variation in the degree of aromatic condensation of chars // Org. Geochem. 2009. V. 12(40). P. 1161–1168.
- Mierzwa-Hersztek M., Gondek K., Kopeс M., Ukalska–Jaruga M. Biochar changes in soil based on quantitative and qualitative humus compounds parameters // Soil ukalska-jaruga science annual. 2018. V. 69 (4). P. 234–242.
- Nocentini C., Guenet B., Mattia E.D. Certini G., Bardoux G., Rumpel C. Charcoal mineralisation potential of microbial inocula from burned and unburned forest soil with and without substrate addition // Soil Biol. Biochem. 2010. V. 9(42). P. 1472–1478.
- Orlova N., Abakumov E.V., Orlova E., Yakkonen K. Soil organic matter alteration under biochar amendment: study in the incubation experiment on the Podzol soils of the Leningrad region (Russia) // J. Soil Sediment. 2019. V. 6(19). P. 2708–2716.
- Orlova N., Orlova E., Abakumov E., Smirnova K., Chukov S. Humic Acids Formation during Compositing of Plant Remnants in Presence of Calcium Carbonate and Biochar // Agronomy. 2022. V. 10(12). P. 2275.
- Osman A.I., Fawzy S., Farghali M., El-Azazy M., Elgarahy A.M., Fahim R.A., Maksoud M.I.A.A. Ajlan A.A., Yousry M., Saleem Y., Rooney D.W. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review // Environ. Chem. Lett. 2022. V. 4(20). P. 2385–2485.
- Qambrani N.A., Rahman M.M., Won S., Shim S., Ra C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review // Renew. Sustain. Energy Rev. 2017. V. 79. P. 255–273.
- Rangabhashiyam S., dos Santos Lins P.V., de Magalhaes Oliveira L.M.T., Sepulveda P., Ighalo J.O., Rajapaksha A.U., Meili L. Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: A critical review. // Environmental Pollution. 2022. V. 293. P. 118581.
- Rosa J.M. de la, Rosado M., Paneque M., Knicker H. Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils // Sci. Total Environ. 2018. V. 613–614. P. 969–976.
- Rutgers M., Wouterse M., Drost S.M., Breure A.M., Mulder C., Stone D., Creamer R.E., Winding A., Bloem J. Monitoring soil bacteria with community-level physiological profiles using BiologTM ECO-plates in the Netherlands and Europe // Appl. Soil Ecol. 2016. V. 97. P. 23–35.
- Ryzak M., Bieganowski A. Methodological aspects of determining soil particle-size distribution using the laser diffraction method // J. Plant Nutr. Soil Sci. 2011. V. 4(174). P. 624–633.
- Sarkhot D.V., Berhe A. A., Ghezzehei T.A. Impact of Biochar Enriched with Dairy Manure Effluent on Carbon and Nitrogen Dynamics // J. Environ. Qual. 2012. V. 4(41). P. 1107–1114.
- Sevelsted T.F., Herfort D., Skibsted J. 13C chemical shift anisotropies for carbonate ions in cement minerals and the use of 13C, 27Al and 29Si MAS NMR in studies of Portland cement including limestone additions // Cement Concrete Res. 2013. V. 52. P. 100–111.
- Soong J.L., Reuss, D., Pinney C., Boyack T., Haddix M.L., Stewart, C.E., Cotrufo M.F. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant Isotope Labeling // J. Vis. Exp. V. 83. P. 51117.
- Sousa J.R. de, Correia J.A.C., de Almeida J.G.L, Rodrigues S., Pessoa O.D.L., Melo V.M.M., Gonçalves L.R.B. Evaluation of a co-product of biodiesel production as carbon source in the production of biosurfactant by P. aeruginosa MSIC02 // Process Biochem. 2011. V. 9(46). P. 1831–1839.
- Su P., Brookes P.C., He Y., Wu J., Xu J. An evaluation of a microbial inoculum in promoting organic C decomposition in a paddy soil following straw incorporation // J. Soil Sediment. 2016. V. 6(16). P. 1776–1786.
- Tan Ch., Zeyu Zh., Rong H., Ruihong M., Hongtao W., Wenjing L. Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism // Chemosphere. 2015. V. 134. P. 286–293.
- Tauqeer H.M., Turan V., Farhad M, Iqbal M. Sustainable agriculture and plant production by virtue of biochar in the era of Climate Change/Hasanuzzaman G.J., Ahammed K. Nahar, Singapore: Springer Nature, 2022. P. 21–42.
- Wang J., Xiong Z., Kuzyakov Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects // GCB Bioenergy. 2016. V. 8. № 3. P. 512–523.
- Zeng Q., Brown P.H. Soil potassium mobility and uptake by corn under differential soil moisture regimes // Plant Soil. 2000. V. 2(221). P. 121–134.
- Zhang J., Shao J., Jin Q., Lia Z., Zhang X., Chen Y., Zhang S., Chen H. Sludge-based biochar activation to enhance Pb(II) adsorption // Fuel. 2019. V. 252. P. 101–108.
- Zhang Q. Duan P., Gunina A., Xi Z. Mitigation of carbon dioxide by accelerated sequestration from long-term biochar amended paddy soil // Soil Till. Res. 2021. V. 209. P. 104955.
Supplementary files
