Magnetocaloric Effect in the Laves Phase of GdNi2 in Strong Magnetic Fields

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Experimental studies of the magnetic and magnetocaloric properties of the Laves phase of GdNi2 have been carried out in external static up to 3 T and pulsed up to 50 T magnetic fields. It has been found that in a magnetic field of 3 T the change in the magnetic entropy of the alloy reaches its maximum value ΔSm = −8 J/(kg K) in the vicinity of the Curie temperature TC = 73.6 K. The corresponding adiabatic temperature change in this case, calculated by an indirect method, is ΔTad ≈ 3 K. The maximum value of the adiabatic temperature change measured by the direct method in a pulsed magnetic field of 50 T at T0 = 77 K, was equal to ΔTad = 15 K, which agrees well with theoretical predictions.

About the authors

A. P. Kamantsev

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: shchichko.marina.csu@gmail.com
Moscow, 125009 Russia

V. V. Koledov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: shchichko.marina.csu@gmail.com
Moscow, 125009 Russia

V. G. Shavrov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: shchichko.marina.csu@gmail.com
Moscow, 125009 Russia

D. V. Plakhotskiy

Chelyabinsk State University

Email: shchichko.marina.csu@gmail.com
Chelyabinsk, 454001 Russia

M. Yu. Bogush

Chelyabinsk State University

Email: shchichko.marina.csu@gmail.com
Chelyabinsk, 454001 Russia

M. V. Utarbekova

Chelyabinsk State University

Email: shchichko.marina.csu@gmail.com
Chelyabinsk, 454001 Russia

M. A. Orshulevich

Chelyabinsk State University

Author for correspondence.
Email: shchichko.marina.csu@gmail.com
Chelyabinsk, 454001 Russia

References

  1. Суслов Д.А., Шавров В.Г., Коледов В.В. и др. // Челябинский физико-математический журн. 2020. Т. 5. № 4. С. 612. https://doi.org/10.47475/2500-0101-2020-15420
  2. Stein F., Leineweber A. // J. Mater. Sci. 2021. V. 56. № 9. P. 5321. https://doi.org/10.1007/s10853-020-05509-2
  3. Chu F., Chen Z.W., Fuller C.J. et al. // J. Appl. Phys. 1996. V. 79. № 8. P. 6405. https://doi.org/10.1063/1.362013
  4. Young K-H., Chang S., Lin X. // Batteries. 2017. V. 3. № 3. P. 27. https://doi.org/10.3390/batteries3030027
  5. Goremychkin A., Natkaniec I., Mühle E., Chistyakov O.D. // J. Magn. Magn. Mater. 1989. V. 81. P. 63. https://doi.org/10.1016/0304-8853(89)90229-1
  6. Plaza J.R., de Sousa V.S.R., von Ranke P.J. et al. // J. Appl. Phys. 2009. V. 105. № 1. P. 013903. https://doi.org/10.1063/1.3054178
  7. von Ranke P.J., Nobrega E.P., de Oliveira I.G. et al. // J. Alloys Compound. 2002. V. 344. № 1-2. P.145. https://doi.org/10.1016/S0925-8388(02)00354-7
  8. Gomes M., Oliveira I.S., Guimarães A.P., et al. // J. Appl. Phys. 2003. V. 93. № 10. P. 6939. https://doi.org/10.1063/1.1558251
  9. Nouri K., Saidi M., Walha S. et al. // Chemistry Africa. 2020. V. 3. № 1. P. 111. https://doi.org/10.1007/s42250-019-00095-6
  10. Sánchez Llamazares J.L., Sánchez-Valdes C.F., Ibarra-Gaytan P.J. et al. // J. Appl. Phys. 2013. V. 113. № 17. P. 17A912. https://doi.org/10.1063/1.4794988
  11. Ibarra-Gaytán P.J., Sánchez Llamazares J.L., Álvarez-Alonso P. et al. // J. Appl. Phys. 2015. V. 117. № 17. P. 17C116. https://doi.org/10.1063/1.4915480
  12. Taskaev S.V., Buchelnikov V.D., Pellenen A.P. et al. // J. Appl. Phys. 2013. V. 113. № 13. P. 17A933. https://doi.org/10.1063/1.4799256
  13. Taskaev S., Skokov K., Khovaylo, V. et al. // J. Magn. Magn. Mater. 2018. V. 459. P. 42. https://doi.org/10.1016/j.jmmm.2017.12.052
  14. Matsumoto K., Asamato K., Nishimura Y. et al. // J. Phys.: Conf. Ser. 2012. V. 400. № 5. Article No. 052020. https://doi.org/10.1088/1742-6596/400/5/052020
  15. Baranov N.V., Proshkin A.V., Gerasimov E.G. et al. // Phys. Rev. B 2007. V. 75. № 9. P. 092402. https://doi.org/10.1103/PhysRevB.75.092402
  16. Jiang C. // Acta Mater. 2007. V. 55. P. 1599. https://doi.org/10.1016/j.actamat.2006.10.020
  17. Skrabeck E.A., Wallace W.E. // J. Appl. Phys. 1963. V. 34. № 4. P. 1356. https://doi.org/10.1063/1.1729507
  18. Coey J.M.D. Magnetism and Magnetic Materials. Cambridge University. N.Y.: Press, 2009.
  19. Gottschall T., Kuz’min M.D., Skokov K.P. et al. // Phys. Rev. B. 2019. V. 99. № 13. P. 134429. https://doi.org/10.1103/PhysRevB.99.134429
  20. Каманцев А.П., Амиров А.А., Кошкидько Ю.С. и др. // ФТТ. 2020. Т. 62. № 1. С. 117.
  21. Pan Y.Y., Nash P. // Phase Diagrams of Binary Nickel Alloys / Ed. by P. Nash. Materials Park: ASM International, 1991. P. 382.
  22. Fiorillo F. Characterization and Measurement of Magnetic Materials. Amsterdam: Elsevier, 2004. P. 554.
  23. Paudyal D., Mudryk Y., Lee Y.B. et al. // Phys. Rev. B 2008. V. 78. № 18. P. 184436. https://doi.org/10.1103/PhysRevB.78.184436
  24. Taskaev S., Khovaylo V., Skokov K. et al. // J. Appl. Phys. 2020. V. 127. № 22. P. 233906. https://doi.org/10.1063/5.0006281
  25. Oesterreicher H., Parker T.F. // J. Appl. Phys. 1984. V. 55. № 12. P. 4334. https://doi.org/10.1063/1.333046
  26. Khovaylo V.V., Taskaev S.V. // Encyclopedia of Smart Materials. 2022. V. 5. P. 407. https://doi.org/10.1016/B978-0-12-815732-9.00132-7

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (57KB)
3.

Download (829KB)
4.

Download (277KB)
5.

Download (68KB)
6.

Download (72KB)
7.

Download (137KB)
8.

Download (39KB)

Copyright (c) 2023 М.В. Утарбекова, М.А. Оршулевич, А.П. Каманцев, В.В. Коледов, В.Г. Шавров, Д.В. Плахотский, М.Ю. Богуш