Synchronization of Gold sequences based on fast transform in a truncated basis of Walsh–Hadamard functions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on the analysis of the structures of isomorphic multiplicative groups of extended Galois fields, it is established that any cyclic shift of a pseudo-random Gold sequence can be transformed into a function belonging to the complete set of analogues of Rademacher functions of the corresponding dimension. This made it possible to develop a new algorithm for fast synchronization of Gold sequences based on the calculation of their discrete convolution using fast spectral transformation in a truncated basis of Walsh–Hadamard functions. The gain of the developed algorithm in terms of the number of arithmetic operations compared to the traditional method of calculating discrete convolution increases with increasing sequence length N and for N=511.1023 is approximately 3.4 times.

About the authors

S. F. Gorgadze

Moscow Technical University of Communication and Information

Author for correspondence.
Email: s.f.gorgadze@mtuci.ru
Russian Federation, Moscow

Dao Vu Shi

Moscow Technical University of Communication and Information

Email: s.f.gorgadze@mtuci.ru
Russian Federation, Moscow

A. V. Ermakova

Moscow Technical University of Communication and Information

Email: s.f.gorgadze@mtuci.ru
Russian Federation, Moscow

References

  1. Maral G., Bousquet M., Sun Z. Satellite Communications Systems. United Kingdom: Wiley, 2020.
  2. Gold R. // IEEE Trans. 1967. V. IT-13. № 4. P. 619. https://doi.org/10.1109/TIT.1967.1054048
  3. Кузнецов В.С., Шевченко И.В., Волков А.С., Солодков А.В. // Труды МАИ. 2017. Вып. 96. https://trudymai.ru/upload/iblock/f64/Kuznetsov_Hevchenko_Volkov_Solodkov_rus.ru&issue=96
  4. Кузнецов В.С., Мордасов К.А. // Изв. вузов. Электроника. 2010. № 1. С. 57.
  5. Михайлов В.Ю., Мазепа Р.Б. // T-Comm: Телекоммуникации и транспорт. 2018. Т. 12. № 4. С. 4.
  6. Michaylov V. Yu., Mazepa R.B. // Systems of Signal Generating and Processing in the Field of on Board Communications: Conf. Proc. 2021. P. 9416089.
  7. Лосев В.В., Бродская Е.Б., Коржик В.И. Поиск и декодирование сложных дискретных сигналов. М.: Радио и связь, 1988.
  8. Лосев В.В., Дворников В.Д. // РЭ. 1983. Т. 28. № 8. С. 1540.
  9. Варакин Л.Е. Системы связи с шумоподобными сигналами. М.: Радио и связь, 1985.
  10. Питерсон У., Уэлдон Э. Коды, исправляющие ошибки. М.: Мир, 1976.
  11. Свердлик М.Б. Оптимальные дискретные сигналы. М.: Сов. радио, 1975.
  12. Канатова Л.В., Литвинов В.Л., Финк Л.М. // Проблемы передачи информации. 1986. Т. 22. Вып. 2. С. 98.
  13. Горгадзе С.Ф., Ву Ши Д., Ермакова А.В. // РЭ. 2024. Т. 69. № 2. С.
  14. Трахтман А.М., Трахтман В.А. Основы теории дискретных сигналов на конечных интервалах. М.: Сов. радио, 1975.
  15. Горгадзе С.Ф. // РЭ. 2005. Т. 50. № 3. С. 302.
  16. Горгадзе С.Ф. // РЭ. 2006. Т. 51. № 4. С. 428.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences