On the frequency band of polarizers based on layered periodic dielectric structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

By numerically solving the dispersion equations and performing numerical simulations using the finite element method with the “eigenmode” option and the Floquet channel in the ANSYS HFSS software environment, a study and optimization of the parameters of a polarizer based on a layered periodic dielectric medium (dielectric–air) were conducted. The optimal values of parameters (the dielectric permittivity of the material, the ratio of the dielectric layer thickness to the structure period, and the thickness of the polarizer) were found, ensuring a relative bandwidth with an ellipticity coefficient of –3 dB exceeding 100%.

Full Text

Restricted Access

About the authors

Van Chung Bui

Moscow Institute of Physics and Technology (National Research University)

Email: vak@cplire.ru
Russian Federation, Institutsky per., 9, Dolgoprudny, Moscow region, 141700

V. A. Kaloshin

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Author for correspondence.
Email: vak@cplire.ru
Russian Federation, Mokhovaya str., 11, build. 7, Moscow, 125007

E. V. Frolova

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: vak@cplire.ru
Russian Federation, Mokhovaya str., 11, build. 7, Moscow, 125007

References

  1. Wang K.X., Wong H.A // 2017 IEEE Int. Workshop on Electromagnetics: Aрplications and Student Innovation Competition. London. 30 May — 01 Jun. N.Y.: IEEE, 2017. Р. 138.
  2. Lin C., Ge Y., Bird T. S., Liu K. // IEEE Antennas and Wireless Propagation Lett. 2018. V. 17. № 3. P. 480.
  3. Wang X., Wong W. // IEEE Trans. 2018. V. AP-66. № 8. P. 4303.
  4. Ding Ch., Luk K.-M. // IEEE Trans. 2019. V. AP-67. № 10. P. 6645.
  5. Gao J., Zhang Y, Sun Y., Wu O. // Materials. 2019. V. 12. № 23. Article No. 3857. P. 1.
  6. Campo M. A., Carluccio G., Blanco D. еt al. // IEEE Trans. 2021. V. AP-69. № 1. P. 43.
  7. Ding Ch., Luk K.-M. // IEEE Trans. 2021. V. AP-69. № 12. P. 8494.
  8. Ding Ch., Luk K.-M. // IEEE Trans. 2022. V. АР-70. № 4. P. 2450.
  9. Ding Ch., Zhou Y, Luk K.-M. // 2022 IEEE MTT-S Intern. Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). IEEE. 2022. P. 1.
  10. Рытов С.М. // ЖЭТФ. 1955. Т. 29. С. 605. 11. Wang H.B., Cheng Y. J., Chen Z. N. // IEEE Trans. 2020. V. AP-68. № 2. P. 1186.
  11. Joyal M.-A., Laurin J.-J. // IEEE Trans. 2012. V. AP-60. № 6. P. 3007.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Layered periodic dielectric structure.

Download (119KB)
3. Fig. 2. Dependences of the slowdown coefficients on frequency: FEM – solid curves, dispersion equations (dashed curves); parallel polarization (1, 3), perpendicular polarization (2, 4).

Download (56KB)
4. Fig. 3. Dependences of the differential phase shift on the frequency at different permittivity (a) for c = 0.5 and ε = 2.6 (1); ε = 3.5 (2), ε 4.4 (3); ε = 6 (4), and also at different fill factors (b) for ε = 2.6 and c = 0.875 (1), c = 0.75 (2); c = 0.625 (3); c = 0.5 (4); c = 0.375 (5).

Download (83KB)
5. Fig. 4. Level lines of the quantity fкр — fm/fm.

Download (141KB)
6. Fig. 5. Floquet channel.

Download (51KB)
7. Fig. 6. Reflection coefficient versus frequency: ε = 4.4, c = 0.76 (curves 1, 2); ε = 2.66, c = 0.563 [9] (3, 4); ε = 50, c = 0.0568 [5] (5, 6); parallel polarization (dashed), perpendicular polarization (solid).

Download (164KB)
8. Fig. 7. Dependence of phase shift on frequency: ε = 4.4, c = 0.76 (1); ε = 2.66, c = 0.563 [9] (2); ε = 50, c = 0.0568 [5] (3).

Download (68KB)
9. Fig. 8. Dependence of the amplitude ratio on frequency: ε = 4.4, c = 0.76 (1); ε = 2.66, c = 0.563 [9] (2); ε = 50, c = 0.0568 [5] (3).

Download (94KB)
10. Fig. 9. Dependences of the ellipticity coefficient on frequency: ε = 4.4, c = 0.76 (1); ε = 2.66, c = 0.563 [9] (2); ε = 50, c = 0.0568 [5] (3).

Download (75KB)

Copyright (c) 2024 Russian Academy of Sciences