The Structure, Thermal Stability, Heat Resistance, and Diffusion-Barrier Properties of Coatings in the Mo–Y–Si–B System

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The Mo–Si–B and Mo–Y–Si–B coatings were obtained by magnetron sputtering in the direct-current mode using a 90% MoSi2 + 10% MoB target equipped with yttrium segments. The composition and structure of the coatings were studied by scanning electron microscopy, X-ray phase analysis, and optical emission spectroscopy of a glow discharge. The diffusion-barrier properties and heat resistance were evaluated by annealing at temperatures from 700 to 1000°C. The thermal stability was determined by heating the coating lamellae in a column of a transmission electron microscope in the in situ mode. According to the chemical analysis, the main elements were evenly distributed over the thickness of the coatings. The coating growth rate did not change upon the introduction of yttrium and was in the range of 325–350 nm/min. The Mo–Si–B coating was characterized by a columnar structure with grains of the hexagonal phase h-MoSi2 about 50 nm in size, as well as an insignificant volume fraction of the boron-containing amorphous phase (a‑MoB). An increase in the concentration of Y up to 4 at % led to a decrease in the size of h-MoSi2 crystallites of up to 10 nm. A coating with a maximum concentration of yttrium (7 at %) contained predominantly an amorphous phase a-MoB with phase crystallites dispersed in it h-MoSi2 and t-MoB. The introduction of the optimal amount of yttrium (4 at %) led to a decrease in the thickness of the oxide film by a factor of 6 after annealing at a temperature of 800°C and by three times at 900–1000°C. The coating with the maximum concentration of yttrium (7 at %) had the best diffusion-barrier properties of all the studied samples at 700–1000°С, and also surpassed the Mo–Si–B sample in terms of thermal stability. Positive effects from the introduction of yttrium into the composition of the coatings were connected with (a) structure modification, including suppression of columnar grain growth; (b) transition to a structure with a higher volume fraction of the amorphous phase; (c) isolation of grain boundaries and lengthening of the diffusion path of metal atoms from the substrate; and d) formation of protective surface layers on based on yttrium oxide when heated in air.

Sobre autores

F. Kiryukhantsev-Korneev

National Research Technological University “MISiS”

Email: alina-sytchenko@yandex.ru
119049, Moscow, Russia

A. Sytchenko

National Research Technological University “MISiS”

Email: alina-sytchenko@yandex.ru
119049, Moscow, Russia

P. Loginov

National Research Technological University “MISiS”

Email: alina-sytchenko@yandex.ru
119049, Moscow, Russia

E. Levashov

National Research Technological University “MISiS”

Autor responsável pela correspondência
Email: alina-sytchenko@yandex.ru
119049, Moscow, Russia

Bibliografia

  1. Wang Q.Y. et al. // Surf. Coatings Technol. 2020. V. 402. P. 126310. https://doi.org/10.1016/J.SURFCOAT.2020.126310
  2. Khorram A., Davoodi Jamaloei A., Sepehrnia R. // Optik (Stuttg). 2022. V. 264. P. 169407. https://doi.org/10.1016/J.IJLEO.2022.169407
  3. Mignanelli P.M., Jones N.G., Perkins K.M. et al. // Mater. Sci. Eng. A. 2015. V. 621. P. 265–271. https://doi.org/10.1016/J.MSEA.2014.10.071
  4. Montazeri S., Aramesh M., Rawal S. et al. // Wear. 2021. V. 474–475. № 203759. https://doi.org/10.1016/J.WEAR.2021.203759
  5. Sato A., Chiu Y.L., Reed R.C. // Acta Mater. V. 59. № 1. P. 225–240. https://doi.org/10.1016/J.ACTAMAT.2010.09.027
  6. Tan Y. et al. // J. Alloys Compd. 2021. V. 881. № 160581. https://doi.org/10.1016/J.JALLCOM.2021.160581
  7. Wang T. et al. // J. Alloys Compd. 2021. V. 879. P. 160412. https://doi.org/10.1016/J.JALLCOM.2021.160412
  8. Xie Y., Wang M. // J. Alloys Compd. 2009. V. 480. № 2. P. 454–461. https://doi.org/10.1016/J.JALLCOM.2009.01.100
  9. Xu Y., Li W., Yang X. // Corros. Sci. 2022. V. 196. P. 110033. https://doi.org/10.1016/J.CORSCI.2021.110033
  10. Döleker K.M. et al. // Surf. Coatings Technol. 2021. V. 412. P. 127069. https://doi.org/10.1016/J.SURFCOAT.2021.127069
  11. Zheng Y. et al. // J. Manuf. Process. 2022. V. 79. P. 510–519. https://doi.org/10.1016/J.JMAPRO.2022.04.070
  12. Günen A. et al. // Surf. Coatings Technol. 2017. V. 311. P. 374–382. https://doi.org/10.1016/J.SURFCOAT.2016.12.097
  13. Seo D., Sayar M., Ogawa K. // Surf. Coatings Technol. 2012. V. 206. № 11–12. P. 2851–2858. https://doi.org/10.1016/J.SURFCOAT.2011.12.010
  14. Kiryukhantsev-Korneev F.V., Novikov A.V., Sagalova T.B. et al. // Phys. Metals Metallogr. 2017. V.118. №1136–1146https://doi.org/10.1134/S0031918X17110059
  15. Lange A., Heilmaier M., Sossamann T.A., Perepezko J.H. // Surf. Coatings Technol. 2015. V. 266. P. 57–63. https://doi.org/10.1016/J.SURFCOAT.2015.02.015
  16. Lu-Steffes O.J., Sakidja R., Bero J., Perepezko J.H. // Surf. Coatings Technol. 2012. V. 207. P. 614–619. https://doi.org/10.1016/J.SURFCOAT.2012.08.011
  17. Su L., Lu-Steffes O., Zhang H., Perepezko J.H. // Appl. Surf. Sci. 2015. V. 337. P. 38–44. https://doi.org/10.1016/J.APSUSC.2015.02.061
  18. Kiryukhantsev-Korneev P.V., Bondarev A.V., Shtansky D.V., Levashov E.A. // Protection of Metals and Physical Chemistry of Surfaces. 2015. V. 51(5). P. 794–802.
  19. Kiryukhantsev-Korneev P.V., Sytchenko A.D., Potanin A.Y. et al. // Surf. Coatings Technol. 2020. V. 403. P. 126373. https://doi.org/10.1016/J.SURFCOAT.2020.126373
  20. Terent’eva V.S., Zhestkov B.E. // Russ. J. Phys. Chem. B 2009. V. 3. № 3. P. 391–396. https://doi.org/10.1134/S1990793109030087
  21. Kudryashov A.E., Lebedev D.N., Potanin A.Y., Levashov E.A. // Surf. Coatings Technol. 2018. V. 335. P. 104–117. https://doi.org/10.1016/J.SURFCOAT.2017.12.025
  22. Kiryukhantsev-Korneev P.V. et al. // Lett. Mater. 2020. V. 10. № 4. P. 371–376. https://doi.org/10.22226/2410-3535-2020-4-371-376
  23. Zan X. et al. // Int. J. Refract. Met. Hard Mater. 2011. V. 29. № 4. P. 505–508.
  24. Guo Z. et al. // J. Eur. Ceram. Soc. 2007. V. 27. № 5. P. 2153–2161.
  25. Majumdar S. et al. // Metall. Mater. Trans. A. 2013. V. 44. P. 2243–2257.
  26. Lawal J. et al. // Surface and Coatings Technology, 2017. V. 310. P. 59–69.
  27. Kiryukhantsev-Korneev P.V., Sytchenko A.D. et al. // Surf. Coatings Technol. 2022. V. 442. P. 128141. https://doi.org/10.1016/J.SURFCOAT.2022.128141
  28. Kiryukhantsev-Korneev F.V. // Russ. J. Non-Ferrous Met. 2014. V. 55. № 5. P. 494–504. https://doi.org/10.3103/S1067821214050137
  29. Kiryukhantsev-Korneev P.V., Sytchenko A.D., Loginov P.A. et al. // Coatings. 2022. V. 12. P. 1570. https://doi.org/10.3390/coatings12101570
  30. Yang J. et al. // Intermetallics. 2022. V. 148. P. 107649. https://doi.org/10.1016/J.INTERMET.2022.107649
  31. Yang F. et al. // Surf. Coatings Technol. 2022. V. 445. P. 128746. https://doi.org/10.1016/J.SURFCOAT.2022.128746
  32. Musil J. // Surf. Coatings Technol. 2012. V. 207. P. 50–65. https://doi.org/10.1016/J.SURFCOAT.2012.05.073

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (264KB)
3.

Baixar (1MB)
4.

Baixar (1MB)
5.

Baixar (277KB)
6.

Baixar (502KB)
7.

Baixar (506KB)
8.

Baixar (2MB)
9.

Baixar (585KB)
10.

Baixar (2MB)
11.

Baixar (138KB)
12.

Baixar (3MB)
13.

Baixar (260KB)

Declaração de direitos autorais © Ф.В. Кирюханцев-Корнеев, А.Д. Сытченко, П.А. Логинов, Е.А. Левашов, 2023