Selective Sorbents Based on 2-Hydroxyethylmethacrylate and Ethylene Glycol Dimethacrylate Modified with Boric Acid as High-Affinity Ligands for Glucose

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A synthesis method of granulated polymeric sorbents based on 2-hydroxyethylmethacrylate and ethylene glycol dimethacrylate that possess affinity to glucose sorption sites formed by boric acid molecules has been developed. The participation of boric acid as an additional crosslinking agent and the effect of the amount of the introduced ligand on the surface morphology of the granules and physicochemical properties of the polymeric sorbents have been determined. It has been found that this modification of the polymer matrix promotes an increase in the affinity of the sorption surface and its adsorption capacity to bind glucose in a dynamic mode, as well as high selectivity in comparison with the sorption of its structural analogue, fructose. This can further be used in the development of a method of isolation of glucose from a multicomponent solution and a sorption method of separation of sugars.

Sobre autores

I. Garkushina

Institute of Macromolecular Compounds, Russian Academy of SciencesInstitute of Macromolecular Compounds, Russian Academy of Sciences

Email: irin-g16@yandex.ru
199004, St. Petersburg, Russia

A. Panyuta

Institute of Macromolecular Compounds, Russian Academy of Sciences

Email: irin-g16@yandex.ru
199004, St. Petersburg, Russia

P. Morozova

Institute of Macromolecular Compounds, Russian Academy of Sciences

Email: irin-g16@yandex.ru
199004, St. Petersburg, Russia

A. Osipenko

Institute of Macromolecular Compounds, Russian Academy of Sciences

Autor responsável pela correspondência
Email: irin-g16@yandex.ru
199004, St. Petersburg, Russia

Bibliografia

  1. Ning H. et al. // J. Chromatogr. A. 2022. V. 1671. P. 462994.
  2. Hasanah A.N. et al. // J. Chem. Hindawi Limited. 2020. V. 2020. ID 7282415
  3. Tu X. et al. // Talanta. 2021. V. 226. P. 122142.
  4. Alipour S. et al. // J. Mater. Res. Technol. 2021. V. 12. P. 2298–2306.
  5. Eivazzadeh-Keihan R. et al. // TrAC Trends Anal. Chem. 2021. V. 141. P. 116291.
  6. Xu R. et al. // J. Chromatogr. A. 2021. V. 1635. P. 461707.
  7. Hu Z., Wang X., Chen X. // Anal. Chim. Acta. 2020. V. 1112. P. 16–23.
  8. Gheybalizadeh H., Hejazi P. // React. Funct. Polym. 2022. V. 171. P. 105152.
  9. Amorim M.S., Sales M.G.F., Frasco M.F. // Biosens. Bioelectron. 2022. V. 10. P. 100131.
  10. Li M. et al. // Kexue Tongbao/Chinese Science Bulletin. 2019. V. 64. № 13. P. 1321–1329.
  11. Askin S., Kizil S., Bulbul Sonmez H. // React. Funct. Polym. 2021. V. 167. P. 105002.
  12. Bayraktaroglu S., Kizil S., Bulbul Sonmez H. // J. Environ. Chem. Eng. 2021. V. 9. № 5. P. 106002.
  13. Sulejmanović J. et al. // Chemosphere. 2022. V. 296. P. 133971.
  14. Wang H.H., Shyr T.W., Hu M.S. // J. Appl. Polym. Sci. 1999. V. 74. № 13. P. 3046–3052.
  15. Prosanov I.Y. et al. // Mater. Today Commun. 2018. V. 14. P. 77–81.
  16. Hong X. et al. // J. Appl. Polym. Sci. 2021. V. 138. № 47.
  17. Vedelago J. et al. // Sci. Reports. 2021. V. 11. № 1. P. 1–14.
  18. Belcher R., Tully G.W., Svehla G. // Anal. Chim. Acta. 1970. V. 50. № 2. P. 261–267.
  19. Dawber J.G., Matusin D.H. // J. Chem. Soc. Faraday Trans. 1982. V. 78. № 8. P. 2521–2528.
  20. Crabb W.D., Mitchinson C. // Trends Biotechnol. 1997. V. 15. № 9. P. 349–352.
  21. Kuznetsov B.N. et al. // Катализ в промышленности. 2017. V. 17. № 6. P. 543–553. (In Russ.).
  22. Dupont H. et al. // Macromolecules. 2021. V. 54. № 11. P. 4945–4970.
  23. Yang Y. et al. // Frontiers in Pharmacology. 2017. V. 8. № MAY. P. 287.
  24. Willaman J.J., Davison F.R. // J. Agric. Res. 1924. V. 28. № 5. P. 479–487.
  25. Umpleby R.J. et al. // Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2004. V. 804. № 1. P. 141–149.
  26. Hinz C. // Geoderma. 2001. V. 99. № 3–4. P. 225–243.
  27. Freundlich H. // Zeitschrift für Phys. Chemie. 1907. V. 57U. № 1. P. 385–470.
  28. Ebadi A., Soltan Mohammadzadeh J.S., Khudiev A. // Adsorption. 2009. V. 15. № 1. P. 65–73.
  29. Ebadi A., Soltan Mohammadzadeh J.S., Khudiev A. // Chem. Eng. Technol. 2007. V. 30. № 12. P. 1666–1673.
  30. Krishna Kumar A.S., Jiang S.J., Tseng W.L. // J. Mater. Chem. A. 2015. V. 3. № 13. P. 7044–7057.
  31. Malarvizhi R., Sulochana N. // J. Environ. Prot. Sci. 2008. V. 2. P. 40–46.
  32. Liu Y. // Colloids Surfaces A Physicochem. Eng. Asp. 2006. V. 274. № 1–3. P. 34–36.
  33. Giles C.H., Smith D., Huitson A. // J. Colloid Interface Sci. 1974. V. 47. № 3. P. 755–765.
  34. Boyd G.E., Adamson A.W., Myers L.S. // J. Am. Chem. Soc. 1947. V. 69. № 11. P. 2836–2848.
  35. Lagergren S. // Springer-Verlag. 1907. V. 2. № 1. P. 15.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (104KB)
3.

Baixar (226KB)
4.

Baixar (1MB)
5.

Baixar (29KB)
6.

Baixar (54KB)
7.

Baixar (25KB)
8.

Baixar (59KB)

Declaração de direitos autorais © И.С. Гаркушина, А.С. Панюта, П.Ю. Морозова, А.А. Осипенко, 2023