An Acetone-Neutral Adsorption-Based Sensor of Exhaled-Air Humidity for Diagnosis of Diabetes Mellitus

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An acetone-neutral adsorption-based sensor of exhaled air humidity was developed for potential use in the diagnosis of diabetes mellitus. The sensor was made use a molecular sieve of KA zeolite, a granule of which was is glued to the plate of the quartz resonator of longitudinal oscillations. The sensor sensitivity threshold for water vapor was 0.05% of relative humidity. Due to the molecular-sieve effect, the acetone molecules penetrate to the zeolite pores only at concentrations above ~5%. Therefore, the sensor is sensitive to water-vapor adsorption, but not to acetone vapor and other volatile organic compounds that are present in exhaled air. The content of acetone and other biomarkers of diseases can be detected by a special sensor intended for the diagnosis of diabetes mellitus, lung cancer, alimentary-system organ dysfunction, and other diseases.

Sobre autores

V. Simonov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences; National Research Nuclear University “Moscow Engineering Physics Institute”

Email: simonov.valer@yandex.ru
119071, Moscow, Russia; 115409, Moscow, Russia

A. Fomkin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: simonov.valer@yandex.ru
119071, Moscow, Russia

A. Shkolin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: simonov.valer@yandex.ru
119071, Moscow, Russia

I. Menshikov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: simonov.valer@yandex.ru
119071, Moscow, Russia

Bibliografia

  1. Jones M., Harrison J.M. // Diabetes Technol Ther. 2002. V. 4(3). P. 351–359. https://doi.org/10.1089/152091502760098500
  2. Boots A.W., Bos L.D., van der Schee M.P., van Schooten F.J., Sterk P.J. // Trends Mol. Med. 2015. V. 10. № 21. P. 633. https://doi.org/10.1016/j.molmed.2015.08.001
  3. Kistenev Y.V., Borisov A.V., Kuzmin D.A., Bulanova A.A. // AIP Conf. Proc. 2016. V. 1760. P. 020028. https://doi.org/10.1063/1.4960247
  4. Phillips M., Cataneo R.N., Cheema T., Greenberg J. // Clin. Chim. Acta. 2004. V. 344. P. 189. https://doi.org/10.1016/j.cccn.2004.02.025
  5. Кистенев Ю.В., Тетенева А.В., Сорокина Т.В. // Оптика и спектроскопия, 2020. Т. 128. № 6. С. 805–810.
  6. Novak B.J., Blake D.R., Meinardi S., Rowland F.S., Pontello A., Cooper D.M., Galassetti P.R. // PNAS. 2007. V. 104. № 40. P. 15613. https://doi.org/10.1073/pnas.0706533104
  7. Stephens J.W., Khanolkar M.P., Bain S.C. // Atherosclerosis. 2009. V. 202. № 2. P. 321. https://doi.org/10.1016/j.atherosclerosis.2008.06.006
  8. Krzystek-Korpacka M., Salmonowicz B., Boehm D., Berdowska I., Zielinski B., Patryn E., Noczynska A., Gamian A. // Clinical Biochemistry. 2008. V. 41. P. 48. https://doi.org/10.1016/j.clinbiochem.2007.10.003
  9. Greiter M.B., Keck L., Siegmund T., Hoeschen C., Oeh U., Paretzke H.G. // Diabetes Technology & Therapeutics. 2010. V. 12. № 6. P. 455.
  10. Das S., Pal S., Mitra M. // J. Med. Biol. Eng. 2016. V. 36. P. 605.
  11. Mansour E., Vishinkin R., Rihet S. // Measurement of temperature and relative humidity in exhaled breath, 2019. Sensors and Actuators B Chemical. https://doi.org/10.1016/j.snb.2019.12737121
  12. Di Francesco F., Loccioni C., Fio- ravanti M., Russo A., Pioggia G., Ferro M., Roehrer I., Tabucchi1 S., Onor M. // J. Breath Research. 2008. V. 2(3). No. 037009. .
  13. Di Gilio A., Palmisani J., Ventrella G., Facchini L., Catino A., Varesano N., Piz- zutilo P., Galetta D., Borelli M., Barbieri P., Licen S., de Gennaro G. // Molecules. 2020. V. 25(24). № 5823. https://doi.org/10.3390/molecules25245823.
  14. Harshman S.W., Pitsch R.L., Davidson C.N., Lee E.M., Scott A.M., Hill E.M., Mainali P., Brooks Z.E., Strayer K.E., Schaeublin N.M., Wiens T.L., Brothers M.C., Drummond L.A., Yamamoto D.P., Martin J.A. // J. Breath Research. 2020. V. 14. № 036004. https://doi.org/10.1088/1752-7163/ab7e3b
  15. Симонов В.Н., Артамонова С.Д., Фомкин А.А., Школин А.В., Меньщиков И.Е. // Физикохимия поверхности и защита материалов. 2022. Т. 58. № 4. С. 1–7.
  16. Фомкин А.А., Симонов В.Н. // Пьезорезонансный сенсор микроконцентрации веществ / Патент РФ № 2722975. Госреестр изобретений РФ, 05.06.2020.
  17. Nadykto A.Б, Yu Fangqun // J. Geophysical Research Atmospheres. 2003. V. 108 (D23). P. 4717. https://doi.org/10.1029/2003JD003664
  18. Брек Д. Цеолитовые молекулярные сита. М.: Мир. 1976.
  19. Simonov V.N., Fomkin A.A., Vlasov D.A. et al. // Protection of Metals and Physical Chemistry of Surfaces. 2019. V. 55. № 4. P. 803–806. https://doi.org/10.1134/S2070205119040233

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (93KB)
3.

Baixar (50KB)
4.

Baixar (34KB)
5.

Baixar (65KB)
6.

Baixar (32KB)

Declaração de direitos autorais © В.Н. Симонов, А.А. Фомкин, А.В. Школин, И.Е. Меньщиков, 2023