Structural Сharacteristics, Mechanical Properties, Wear and Oxidation Resistance of Coatings in the Mo–Y–Zr–Si–B System Obtained on Molybdenum by Magnetron Sputtering in the DCMS and HIPIMS Modes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Mo–(Y, Zr)–Si–B coatings were obtained by direct current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HIPIMS) using composite targets of MoSi2 + 10% MoB and (MoSi2 + 10% MoB) + 20% ZrB2, with the Y segments located in their erosion zone with a total area of 5 and 10 cm2. The structure and composition of the coatings were studied by scanning and transmission electron microscopy, glow discharge optical emission spectroscopy, and XRD. The hardness, elastic modulus, elastic recovery, adhesive strength, and resistance of the coatings to abrasive wear and cyclic impact loading were determined. The oxidation resistance and thermal stability were estimated by heating the coatings to a maximum temperature of 1000°C in a muffle furnace and in a transmission electron microscope column, respectively. It has been established that the Mo–Si–B coating contains the h-MoSi2 phase with preferred orientation in the [110] direction and crystallite size of 75 nm. Alloying of Zr and Y coatings, as well as the transition from DCMS to HIPIMS mode, contributed to the suppression of preferential growth of crystallites, increasing their dispersity and the volume fraction of the amorphous phase, which led to an increase in the crack resistance and adhesive strength of the coatings. The HIPIMS method in coating deposition caused an increase in the hardness and elastic modulus by 10%; resistance to cyclical impact, by 60%; and abrasive resistance, by 20%; it also increased oxidation resistance up to 20%. Mo–Y–Zr–Si–B coatings with the optimal composition demonstrated high thermal stability; the main structural component is the hexagonal phase h-MoSi2; it remained in the temperature range of 20–1000°C and also resulted in a more than ninefold increased oxidation resistance of the Mo substrate at 1000°C.

Sobre autores

F. Kiryukhantsev-Korneev

National University of Science and Technology

Email: kiruhancev-korneev@yandex.ru
119049, Moscow, Russia

F. Chudarin

National University of Science and Technology

Email: kiruhancev-korneev@yandex.ru
119049, Moscow, Russia

R. Vakhrushev

National University of Science and Technology

Email: kiruhancev-korneev@yandex.ru
119049, Moscow, Russia

A. Sytchenko

National University of Science and Technology

Email: kiruhancev-korneev@yandex.ru
119049, Moscow, Russia

M. Karpov

Osipyan Institute of Solid State Physics Russian Academy of Sciences

Email: kiruhancev-korneev@yandex.ru
142432, Chernogolovka, Russia

R. Feng

China University of Mining and Technology

Email: kiruhancev-korneev@yandex.ru
221116, Xuzhou, China

E. Levashov

National University of Science and Technology

Autor responsável pela correspondência
Email: kiruhancev-korneev@yandex.ru
119049, Moscow, Russia

Bibliografia

  1. Perepezko J.H. // Science. 2009. V. 326. P. 1068–1069.
  2. Su Ranran, Liu Longfei, Perepezko John H. // International J. Refractory Metals and Hard Materials. 2023. V. 113. P. 106199.
  3. Zhu L., Zhu Y., Ren X., Zhang P., Qiao J., Feng P. // Surface and Coatings Technology. 2019. V. 375. P. 773–781.
  4. Fu T., Zhang Y., Shen F., Cui K., Chen L. // Materials Characterization. 2022. V. 192. P. 112192.
  5. Wei Li, Jinglian Fan, Yan Fan, Lairong Xiao, Huichao Cheng // J. Alloys and Compounds. 2018. V. 740. P. 711–718.
  6. Yanagihara K., Przybylski K., Maruyama T. // Oxidation of Metals. 1997. V. 47. P. 277–293.
  7. Kiryukhantsev-Korneev P.V. et al. // Russian J. Non-Ferrous Metals. V. 55 № 6. P. 645–651. https://doi.org/10.3103/S106782121406011X
  8. Kiryukhantsev-Korneev Ph.V., Iatsyuk I.V., Shvindina N.V., Levashov E.A., Shtansky D.V. // Corrosion Science. 2017. V. 123. P. 319–327.
  9. Kiryukhantsev-Korneev Ph.V., Sytchenko A.D., Sviridova T.A., Sidorenko D.A., Andreev N.V., Klechkovskaya V.V., Polčak J., Levashov E.A. // Surface and Coatings Technology. 2022. V. 442. P. 128141.
  10. Won June Choi et al. // International J. Refractory Metals and Hard Materials. 2019. V. 80. P. 238–242,
  11. Zilong Wu, Kanglu Feng, Jiangbo Sha, Chungen Zhou // Progress in Natural Science: Materials International. 2022. V. 32. № 6. P. 752–757.
  12. Kiryukhantsev-Korneev F.V., Sytchenko A.D., Vakhrushev R.A. et al. // Phys. Atom. Nuclei. 2022. V. 85. P. 2088–2091.
  13. Zhestkova B.E., Terent’eva V.S. // Russian Metallurgy (Metally). 2010. V. 1. P. 33–40.
  14. Pang J., Blackwood D.J. // Corr. Sci. 2016. V. 105. P. 17–24.
  15. Totemeier T.C., Wright R.N., Swank W.D. // Intermetallics. 2004. V. 12. № 12. P. 1335–1344.
  16. Zhang Y., Li H., Ren J., Li K. // Corr. Sci. 2013. V. 72. P. 150–155.
  17. Kuznetsov S.A., Rebrov E.V., Mies M.J.M., de Croon M.H.J.M., Schouten J.C. // Surf. Coat. Technol. 2006. V. 201. P. 971–978.
  18. Kudryashov A.E et al. // Surf. Coat. Technol. 2018. V. 335. P. 104–117.
  19. Zhu L., Chen P., Cai Z., Feng P., Kang X., Akhtar F., Wang X. // Transactions of Nonferrous Metals Society of China. 2022. V. 32. № 3. P. 935–946.
  20. Lange A., Heilmaier M., Sossamann T.A., Perepezko J.H. // Surface and Coatings Technology. 2015. V. 266. P. 57–63.
  21. Perepezko J.H., Sossaman T.A., Taylor M. // J. Them. Spray Tech. 2017. V. 26. P. 929–940.
  22. Ritt P., Sakidja R., Perepezko J.H. // Surf. Coat. Technol. 2012. V. 206. P. 4166–4172.
  23. Shtansky D.V. et al. // Surface and Coatings Technology. 2012. V. 208. P. 14–23.
  24. Kukla R. // Surf. Coat. Technol. 1997. V. 93. № 1. P. 1–6.
  25. Kiryukhantsev-Korneev Ph.V., Horwat D., Pierson J.F., Levashov E.A. // Tech. Phys. Lett. 2014. V. 40. P. 614–617.
  26. Kiryukhantsev-Korneev Ph.V., Sheveyko A.N., Vorotilo S.A., Levashov E.A. // Ceramics International. 2020. V. 46. № 2. P. 1775–1783.
  27. Helmersson U., Lattemann M., Bohlmark J., Ehiasarian A.P., Gudmundsson J.T. // Thin Solid Films. 2006. V. 513. P. 1–24.
  28. Xie Dong, Wei L.J., Liu H.Y., Zhang K., Leng Y.X., Matthews D.T.A., Ganesan R., Su Y.Y. // Surf. Coat. Technol. 2022. V. 442. 128192.
  29. Lattemann M., Ehiasarian A.P., Bohlmark J., Persson P.Å.O., Helmersson U. // Surf. Coat. Technol. 2006. V. 200. P. 6495–6499.
  30. Kiryukhantsev-Korneev F.V. // Russ. J. Non-ferrous Metals. 2014. V. 55. P. 494–504. https://doi.org/10.3103/S1067821214050137
  31. Veprek S. et al. // Thin Solid Films. 2005. V. 476. P. 1–29.
  32. Fischer-Cripps A.C. et al. // Surface and Coatings Technology. 2006. V. 200. P. 5645–5654.
  33. Zawischa M., Azri M.M., Supian B.M., Makowski S., Schaller F., Weihnacht V. // Surf. Coat. Technol. 2021. V. 415. P. 127118.
  34. Musil J. // Research signpost. 2008. P. 1–35.
  35. Shtansky D.V. et al. // Phys. Solid State. 2006. V. 48. P. 1301–1308.
  36. Tayebi N., Polycarpou A.A., Conry T.F. // J. Materials Research. 2004. V. 19. P. 1791–1802. https://doi.org/10.1557/JMR.2004.0233
  37. Li J., Beres W. // Canadian Metallurgical Quarterly. 2007. V. 46:2. P. 155–173. https://doi.org/10.1179/cmq.2007.46.2.155
  38. Kiryukhantsev-Korneev P.V., Sheveiko A.N., Petrzhik M.I. // Prot Met Phys Chem Surf. 2019. V. 55. P. 502–510.
  39. Schwarzer N., Duong Q.-H., Bierwisch N., Favaro G., Fuchs M., Kempe P., Widrig B., Ramm J. // Surface and Coatings Technology. 2011. V. 206(6). P. 1327–1335. https://doi.org/10.1016/j.surfcoat.2011.08.051
  40. Leyland A., Matthews A. // Wear. 2000. V. 246. P. 1.
  41. Mustafa M.M.B., Umehara N., Tokoroyama T., Murashima M., Shibata A., Utsumi Y., Moriguchi H. // Tribology Online. 2019. V. 14. № 5. P. 388–397.
  42. Kiryukhantsev-Korneev P.V., Pierson J.F., Bychkova M.Y. et al. // Tribol. Lett. 2016. V. 63. P. 44.
  43. Chen J., Bull S. // J. Physics D: Applied Physics. 2011. V. 44(3). P. 34001.
  44. Kiryukhantsev-Korneev Ph.V., Sytchenko A.D., Potanin A.Yu., Vorotilo S.A., Levashov E.A. // Surf. Coat. Technol. 2020. V. 403. P. 126373.
  45. Beake B.D. // Surface and Coatings Technology. 2022. V. 442. P. 128272. https://doi.org/10.1016/j.surfcoat.2022.128272
  46. McMaster S.J., Kosarieh S., Liskiewicz T.W., Neville A., Beake B.D. // Tribology International. 2023. V. 185. P. 108524. https://doi.org/10.1016/j.triboint.2023.108524

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (403KB)
3.

Baixar (439KB)
4.

Baixar (1011KB)
5.

Baixar (672KB)
6.

Baixar (1MB)
7.

Baixar (1MB)
8.

Baixar (946KB)
9.

Baixar (149KB)
10.

Baixar (1MB)
11.

Baixar (193KB)
12.

Baixar (370KB)
13.

Baixar (1MB)
14.

Baixar (972KB)

Declaração de direitos autorais © Ф.В. Кирюханцев-Корнеев, Ф.И. Чударин, Р.А. Вахрушев, А.Д. Сытченко, М.И. Карпов, P. Feng, Е.А. Левашов, 2023