Obtaining Methanol from CO2 on Cu–Zn/Al2O3 and Cu–Zn/SiO2 Catalysts: Effect of the Support and Conditions of the Reaction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A study is performed of the catalytic properties of Cu–Zn catalysts on Al2O3 and SiO2 supports (Acros) in the reaction of CO2 hydrogenation to obtain methanol. A sample of 30Cu15Zn/Al2O3 displays great selectivity toward methanol. A sample of 30Cu15Zn/SiO2 has the highest methanol performance. The methanol performance of a sample of 10Cu5Zn/Al2O3 is doubled when the pressure is raised from 10 to 30 atm, and a 94% increase in selectivity is observed. A sample of catalyst 10Cu5Zn/SiO2 does not lose its activity after 10 h of a catalytic reaction, and its methanol performance grows with repeated use

About the authors

K. O. Kim

Faculty of Chemistry, Moscow State University

Email: kyst@list.ru
119991, Moscow, Russia

A. A. Shesterkina

Faculty of Chemistry, Moscow State University; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: kyst@list.ru
119991, Moscow, Russia; 119991, Moscow, Russia

M. A. Tedeeva

Faculty of Chemistry, Moscow State University

Email: kyst@list.ru
119991, Moscow, Russia

K. E. Kartavova

Faculty of Chemistry, Moscow State University

Email: kyst@list.ru
119991, Moscow, Russia

P. V. Pribytkov

Faculty of Chemistry, Moscow State University

Email: kyst@list.ru
119991, Moscow, Russia

S. F. Dunaev

Faculty of Chemistry, Moscow State University

Email: kyst@list.ru
119991, Moscow, Russia

A. L. Kustov

Faculty of Chemistry, Moscow State University; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: kyst@list.ru
119991, Moscow, Russia; 119991, Moscow, Russia

References

  1. Evdokimenko N.D., Kustov A.L., Kim K.O. et al. // Mendeleev Commun. 2018. V. 28. P. 147.
  2. Pokusaeva Y.A., Koklin A.E., Lunin V.V. et al. // Mendeleev Commun. 2019. V. 29. P. 382.
  3. Evdokimenko N.D., Kustov A.L., Kim K.O. et al. // Funct. Matter. Lett. 2020. V. 2040004. P. 1.
  4. Chernyak S.A., Ivanov A.S., Stolbov D.N. et al. // Carbon. 2020. V. 168. P. 475.
  5. Bogdan V.I., Koklin A.E., Kustov A.L. et al. // Molecules. 2021. V. 26. P. 2883.
  6. Konopatsky A.S., Firestein K.L., Evdokimenko N.D. et al. // J. Catal. 2021. V. 402. P. 130.
  7. Kovalskii A.M., Volkov I.N., Evdokimenko N.D. et al. // Appl. Catal. B. 2022. V. 303. P. 120891.
  8. Evdokimenko N.D., Kapustin G.I., Tkachenko O.P. et al. // Molecules. 2022. V. 27. P. 1065.
  9. Zeolites and Zeolite-like Materials / Ed. by B.F. Sels, L.M. Kustov. 2016. P. 1–459.
  10. Tursunov O., Kustov L., Tilyabaev Z. // J. Petroleum Sci. Eng. 2019. V. 180. P. 773.
  11. Tursunov O., Kustov L., and Kustov A. // Oil and Gas Sci. Technol. 2017. V. 72 (5). P. 30.
  12. Tursunov O., Kustov L., and Tilyabaev Z. // J. Taiwan Inst. Chem. Engineers 2017. V. 78. P. 416.
  13. Kurtz M. // Catal. Lett. 2003. V. 86. P. 77.
  14. Saito M. // Catal. Surv. From Asia. 2004. V. 8. P. 285.
  15. Ma J., Sun N.N., Zhang X.L. et al. // Catal. Today. 2009. V. 148. P. 221.
  16. Wang W., Wang S., Ma X. et al. // Chem. Soc. Rev. 2011. V. 40. P. 3703.
  17. Jiang Y. // J. CO2 Util. 2018. V. 26. P. 642.
  18. Dasireddy V.D.B.C., Likozar B. // Ren. En. 2019. V. 140. P. 452.
  19. Meunier N., Chauvy R., Mouhoubi S. et al. // Ren. En. 2020. V. 146. P. 1192.
  20. Fang X., Xi Y., Jia H. et al. // J. Ind. Eng. Chem. 2020. V. 88. P. 268.
  21. Kropp T., Paier J., Sauer J. // J. Catal. 2017. V. 352. P. 382.
  22. Gribovskii A., Ovchinnikova E., Vernikovskaya N. et al. // Chem. Eng. J. 2017. V. 308. P. 135.
  23. Losch P., Pinar A.B., Willinger M.G. et al. // J. Catal. 2017. V. 345. P. 11.
  24. Wang X., Li R., Bakhtiar S. ul H. et al. // Catal. Commun. 2018. V. 108. P. 64.
  25. Niu X., Gao J., Wang K. et al. // Fuel Process Technol. 2017. V. 157. P. 99.
  26. Yang L., Liu Z., Liu Z. et al. // Chin. J. Catal. 2017. V. 38 (4). P. 683.
  27. Pirola C., Galli F., Bianchi C.L. et al. // En. Fuels. 2014. V. 28 (8). P. 5236.
  28. Boffito D.C., Galli F., Martinez P.R. et al. // Chem. Eng. Trans. 2014. V. 43. P. 427.
  29. Sun Q. // J. Catal. 1997. V. 167. P. 92.
  30. Mierczynski P. // Catal. Today. 2011. V. 176. P. 21.
  31. Bogdan V.I., Kustov L.M. // Mendeleev Commun. 2015. V. 25. P. 446.
  32. Ren H. // J. Ind. Eng. Chem. 2015. V. 28. P. 261.
  33. Bukhtiyarova M. // Catal. Lett. 2017. V. 147. P. 416.
  34. Zhang C. // J. CO2 Util. 2017. V. 17. P. 263.
  35. Sloczynski J., Grabowski R., Kozlowska A. et al. // Appl. Catal. A. 2004. V. 278. P. 11.
  36. Evdokimenko N.D., Kim K.O., Kapustin G.I. et al. // Catal. Ind. 2018. V. 10. P. 288.
  37. Kim K.O., Evdokimenko N.D., Pribytkov P.V. et al. // Russ. J. Phys. Chem. A. 2021. V. 95. P. 2422.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (52KB)
3.

Download (19KB)
4.

Download (51KB)
5.

Download (19KB)
6.

Download (54KB)
7.

Download (52KB)
8.

Download (26KB)

Copyright (c) 2023 К.О. Ким, А.А. Шестеркина, М.А. Тедеева, К.Е. Картавова, П.В. Прибытков, С.Ф. Дунаев, А.Л. Кустов