Исследование спектра ионизации 6,6-диметил-фульвена методами алгебраического диаграммного построения и связанных кластеров

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Электронная структура и спектр ионизации 6,6-диметил-фульвена рассчитаны с использованием метода алгебраического диаграммного построения третьего порядка для одночастичной функции Грина (IP-ADC(3)) и метода уравнений движения для связанных кластеров в приближении модели однократных и двукратных возбуждений (IP-EOM-CCSD). Результаты использованы для интерпретации недавно полученного фотоэлектронного спектра 6,6-диметил-фульвена [M. H. Palmer et. al, Chem. Phys. Lett. 2022, 796, 139558]. Предложен ряд новых отнесений, среди которых наиболее значимым является отнесение ранее неотнесенного плеча третьей фотоэлектронной полосы в районе 10.5 эВ, которое согласно нашим IP-ADC(3)-расчетам, образовано сателлитными переходами, связанными с p-орбиталями фульвенового кольца 2a2 и 2b1. Полученные в работе данные также позволяют полагать, что у метода IP-EOM-CCSD и эквивалентных ему подходов имеются трудности с корректным описанием сателлитных состояний.

About the authors

А. Б. Трофимов

ФГБОУ ВО Иркутский государственный университет; ФГБУН Иркутский институт химии им. А. Е. Фаворского СО РАН

Author for correspondence.
Email: abtrof@mail.ru
Russian Federation, 664003 Иркутск; 664033 Иркутск

А. Д. Скитневская

ФГБОУ ВО Иркутский государственный университет

Email: abtrof@mail.ru
Russian Federation, 664003 Иркутск

А. М. Белоголова

ФГБОУ ВО Иркутский государственный университет; ФГБУН Иркутский институт химии им. А. Е. Фаворского СО РАН

Email: abtrof@mail.ru
Russian Federation, 664003 Иркутск; 664033 Иркутск

Э. К. Якимова

ФГБОУ ВО Иркутский государственный университет

Email: abtrof@mail.ru
Russian Federation, 664003 Иркутск

Е. В. Громов

ФГБОУ ВО Иркутский государственный университет

Email: abtrof@mail.ru
Russian Federation, 664003 Иркутск

References

  1. Preethalayam P., Krishnan K.S., Thulasi S. и др. // Chem. Rev. 2017. Т. 117. № 5. С. 3930. https://doi.org/10.1021/acs.chemrev.6b00210
  2. Swan E., Platts K., Blencowe A. // Beilstein J. Org. Chem. 2019. Т. 15. С. 2113. https://doi.org/10.3762/bjoc.15.209
  3. Martin-Somer A., Xue X.-S., Jamieson C.S. и др. // J. Am. Chem. Soc. 2023. Т. 145. № 7. С. 4221. https://doi.org/10.1021/jacs.2c12871
  4. Lindner M.M., Alachraf M.W., Mitschke B. и др. // Angew. Chemie Int. Ed. 2023. Т. 62. № 35. C. e202303119. https://doi.org/10.1002/anie.202303119
  5. Scott A.P., Agranat I., Biedermann P.U. и др. // J. Org. Chem. 1997. Т. 62. № 7. С. 2026. https://doi.org/10.1021/jo962407l
  6. Replogle E.S., Trucks G.W., Staley S.W. // J. Phys. Chem. 1991. Т. 95. № 18. С. 6908. https://doi.org/10.1021/j100171a031
  7. Gleiter R., Heilbronner E., Meijere A. de. // Helv. Chim. Acta. 1971. Т. 54. № 4. С. 1029. https://doi.org/10.1002/hlca.19710540409
  8. Palmer M.H., Coreno M., De Simone M. и др. // Chem. Phys. Lett. 2022. Т. 796. С. 139558. https://doi.org/10.1016/j.cplett.2022.139558
  9. Cederbaum L.S., Domcke W., Schirmer J., Von Niessen W. Adv. Chem. Phys. / Eds. I. Prigogine, S.A. Rice., Wiley Online Library. 1986. Т. LXV. С. 115. https://doi.org/10.1002/9780470142899.ch3
  10. Nakatsuji H., Hirao K. // J. Chem. Phys. 1978. Т. 68. № 5. С. 2053. https://doi.org/10.1063/1.436028
  11. Nakatsuji H. // Chem. Phys. Lett. 1979. Т. 67. № 2–3. С. 334. https://doi.org/10.1016/0009-2614(79)85173-8
  12. Ehara M., Hasegawa J., Nakatsuji H. // Theory and Applications of Computational Chemistry.: Elsevier, 2005. С. 1099. https://doi.org/10.1016/B978-044451719-7/50082-2
  13. Schirmer J., Cederbaum L.S., Walter O. // Phys. Rev. A. 1983. Т. 28. № 3. С. 1237. https://doi.org/10.1103/PhysRevA.28.1237
  14. Schirmer J., Trofimov A.B., Stelter G. // J. Chem. Phys. 1998. Т. 109. № 12. С. 4734. https://doi.org/10.1063/1.477085
  15. Dempwolff A.L., Paul A.C., Belogolova A.M. и др. // Ibid. 2020. Т. 152. № 2. С. 024113. https://doi.org/10.1063/1.5137792
  16. Patanen M., Abid A.R., Pratt S.T. и др. // Ibid. 2021. Т. 155. № 5. С. 054304. https://doi.org/10.1063/5.0058983
  17. Trofimov A.B., Holland D.M.P., Powis I. и др. // Ibid. 2017. Т. 146. № 24. С. 244307. https://doi.org/10.1063/1.4986405
  18. Nooijen M., Bartlett R.J. // Ibid. 1995. Т. 102. № 9. С. 3629. https://doi.org/10.1063/1.468592
  19. Sinha D., Mukhopadhya D., Chaudhuri R. и др. // Chem. Phys. Lett. 1989. Т. 154. № 6. С. 544. https://doi.org/10.1016/0009-2614(89)87149-0
  20. Stanton J.F., Gauss J. // J. Chem. Phys. 1994. Т. 101. № 10. С. 8938. https://doi.org/10.1063/1.468022
  21. Dunning T.H. // Ibid. 1989. Т. 90. № 2. С. 1007. https://doi.org/10.1063/1.456153
  22. Kendall R.A., Dunning T.H., Harrison R.J. // Ibid. 1992. Т. 96. № 9. С. 6796. https://doi.org/10.1063/1.462569
  23. Shao Y., Gan Z., Epifanovsky E. et al. // Mol. Phys. 2015. Т. 113. № 2. С. 184. https://doi.org/10.1080/00268976.2014.952696
  24. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., X. Li, Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., J. Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 16 Revision A.03, Gaussian, Inc., Wallingford, CT, 2016
  25. Schaftenaar G., Vlieg E., Vriend G. // J. Comput. Aided. Mol. Des. 2017. Т. 31. № 9. С. 789. https://doi.org/10.1007/s10822-017-0042-5
  26. Swiderek P., Michaud M., Sanche L. // J. Chem. Phys. 1995. Т. 103. № 19. С. 8424. https://doi.org/10.1063/1.470153
  27. Asmis K.R., Allan M., Schafer O. et al. // J. Phys. Chem. A. 1997. Т. 101. № 11. С. 2089. https://doi.org/10.1021/jp963129x
  28. Trofimov A., Schirmer J., Holland D.M. P. et al. // Chem. Phys. 2001. Т. 263. № 1. С. 167. https://doi.org/10.1016/S0301-0104(00)00334-7

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences