Кавитационная активация окислительной деструкции цефтриаксона в водных растворах

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Впервые исследованы основные закономерности процессов деструкции цефалоспориновых антибиотиков (на примере цефтриаксона) персульфатом (ПС) при совместном воздействии низконапорной гидродинамической кавитации (ГК) и высокочастотного ультразвука мегагерцового диапазона (АК). Дана сравнительная оценка индивидуальных, комбинированных и гибридных окислительных систем. Эффективность деструкции цефтриаксона (ЦЕФ) возрастает в ряду: ГК < АК < АК+ГК (ГАК) < АК/ПС < ГК/ПС < ГАК/ПС < ГАК/ПС/Fe2+. Только в гибридной системе ГАК/ПС/Fe2+ достигается глубокое окисление ЦЕФ (93 %), при давлении на входе в кавитационное устройство 5 атм. Экспериментально, методом ингибирования радикальных реакций доказано, что в окислении цефтриаксона в гибридной системе ГАК/ПС/Fe2+ принимают участие как SO4•--, так и HO-радикалы. Рассмотрено влияние неорганических анионов (SO42-, Cl- и HCO3-) на процесс окислительной деструкции ЦЕФ. Степени мешающего влияния на скорость реакций окисления целевого соединения снижается в ряду: HCO3->>SO42->Cl-. Данное исследование демонстрирует большой потенциал гибридной системы ГАК/ПС/Fe2+ для эффективной деструкции биорезистентных органических загрязняющих веществ.

Full Text

Restricted Access

About the authors

Д. Г. Асеев

Байкальский институт природопользования CO РАН

Author for correspondence.
Email: aseev.denis.g@gmail.com
Russian Federation, Улан-Удэ

М. Р. Сизых

Байкальский институт природопользования CO РАН

Email: aseev.denis.g@gmail.com
Russian Federation, Улан-Удэ

А. А. Батоева

Байкальский институт природопользования CO РАН

Email: aseev.denis.g@gmail.com
Russian Federation, Улан-Удэ

References

  1. Гетьман М.А., Наркевич И.А. // Ремедиум. 2013. С. 50.
  2. Yu X., Tang X., Zuo J. et al. // Sci. Total Environ. 2016. V. 569–570. P. 23. DOI: https://doi.org/10.1016/ j.scitotenv.2016.06.113.
  3. Kumar M., Jaiswal S., Sodhi K.K. et al. // Environ. Int. 2019. V. 124. P. 448. DOI: https://doi.org/10.1016/ j.envint.2018.12.065.
  4. Dadgostar P. // Infect. Drug Resist. 2019. V. 12. P. 3903. DOI: /10.2147/IDR.S234610.
  5. Hofer U. // Nat. Rev. Microbiol. 2019. V. 17. P. 3. doi: 10.1038/s41579-018-0125-x.
  6. Захаренков И.А., Рачина С.А., Козлов Р.С. и др. // Клиническая микробиология и антимикробная химиотерапия. 2022. V. 24. P. 220. doi: 10.36488/cmac.2022.3.220-225.
  7. Ivetić T.B., Finčur N.L., Šojić Merkulov D.V. et al. // Catalysts. 2021. V. 11. doi: 10.3390/catal11091054.
  8. Qian Y., Liu X., Li K. et al. // Chem. Eng. J. 2020. V. 384. P. 123332. DOI: https://doi.org/10.1016/ j.cej.2019.123332.
  9. Zhao Y., Liang X., Wang Y. et al. // J. Colloid Interface Sci. 2018. V. 523. P. 7. DOI: https://doi.org/10.1016/ j.jcis.2018.03.078.
  10. Dewil R., Mantzavinos D., Poulios I. et al. // J. Environ. Manage. 2017. V. 195. P. 93. DOI: 10.1016/ j.jenvman.2017.04.010.
  11. Wang B., Wang Y. // Sci. Total Environ. 2022. V. 831. P. 154906. DOI: https://doi.org/10.1016/ j.scitotenv.2022.154906.
  12. Lin W., Liu X., Ding A. et al. // J. Water Process Eng. 2022. V. 45. P. 102468. DOI: https://doi.org/10.1016/ j.jwpe.2021.102468.
  13. Li S., Wu Y., Zheng H. et al. // Chemosphere. 2023. V. 311. P. 136977. DOI: https://doi.org/10.1016/ j.chemosphere.2022.136977.
  14. Kulišťáková A. // J. Water Process Eng. 2023. V. 53. P. 103727. DOI: https://doi.org/10.1016/ j.jwpe.2023.103727.
  15. Tanveer R., Yasar A., Nizami A.-S. et al. // J. Clean. Prod. 2023. V. 383. P. 135366. DOI: https://doi.org/10.1016/j.jclepro.2022.135366.
  16. Mohod A.V, Teixeira A.C.S.C., Bagal M.V. et al. // J. Environ. Chem. Eng. 2023. V. 11. P. 109773. DOI: https://doi.org/10.1016/j.jece.2023.109773.
  17. Raut-Jadhav S., Badve M.P., Pinjari D.V. et al. // Chem. Eng. J. 2016. V. 295. P. 326. DOI: https://doi.org/10.1016/j.cej.2016.03.019.
  18. Wang L., Luo D., Hamdaoui O. et al. // Sci. Total Environ. 2023. V. 876. P. 162551. DOI: https://doi.org/10.1016/j.scitotenv.2023.162551.
  19. Aseev D.G., Batoeva A.A. // Russ. J. Phys. Chem. A. 2015. V. 89. P. 1585. doi: 10.1134/S0036024415090046.
  20. Garkusheva N., Tsenter I., Kobunova E. et al. // Water. 2022. V. 14. doi: 10.3390/w14172604.
  21. Sampath Kumar K., Moholkar V.S. // Chem. Eng. Sci. 2007. V. 62. P. 2698. DOI: https://doi.org/10.1016/ j.ces.2007.02.010.
  22. Suslick K.S., McNamara W.B., Didenko Y. Hot Spot Conditions during Multi-Bubble Cavitation BT in Sonochemistry and Sonoluminescence / Eds: L.A. Crum, T.J. Mason, J.L. Reisse, K.S. Suslick. Netherlands, Dordrecht: Springer, 1999.
  23. Šarc A., Stepišnik-Perdih T., Petkovšek M. et al. // Ultrason. Sonochem. 2017. V. 34. P. 51. DOI: https://doi.org/10.1016/j.ultsonch.2016.05.020.
  24. Choi J., Cui M., Lee Y. et al. // Chem. Eng. J. 2018. V. 338. P. 323. DOI: https://doi.org/10.1016/ j.cej.2018.01.018.
  25. Gujar S.K., Gogate P.R., Kanthale P. et al. // Sep. Purif. Technol. 2021. V. 257. P. 117888. DOI: https://doi.org/10.1016/j.seppur.2020.117888.
  26. Thanekar P., Gogate P.R. // Sep. Purif. Technol. 2020. V. 239. P. 116563. DOI: https://doi.org/10.1016/ j.seppur.2020.116563.
  27. Ghanbari F., Moradi M. // Chem. Eng. J. 2017. V. 310. P. 41. doi: 10.1016/j.cej.2016.10.064.
  28. Zhou Y., Gao Y., Pang S.-Y. et al. // Water Res. 2018. V. 145. P. 210. DOI: https://doi.org/10.1016/ j.watres.2018.08.026.
  29. N.J. L., Gogate P.R., Pandit A.B. // Process Saf. Environ. Prot. 2021. V. 153. P. 178. DOI: https://doi.org/10.1016/j.psep.2021.07.023.
  30. Calcio Gaudino E., Canova E., Liu P. et al. // Molecules. 2021. V. 26. doi: 10.3390/molecules26030617.
  31. Liu P., Wu Z., Abramova A.V. et al. // Ultrason. Sonochem. 2021. V. 74. P. 105566. DOI: https://doi.org/10.1016/j.ultsonch.2021.105566.
  32. Meng X., Chu Y.B. // Adv. Mater. Res. 2013. V. 763. P. 33. doi: 10.4028/ href='www.scientific.net/AMR' target='_blank'>www.scientific.net/AMR. 763.33.
  33. Wu Z., Yuste-Córdoba F.J., Cintas P. et al. // Ultrason. Sonochem. 2018. V. 40. P. 3. DOI: https://doi.org/10.1016/j.ultsonch.2017.04.016.
  34. Braeutigam P. Degradation of Organic Micropollutants by Hydrodynamic and/or Acoustic Cavitation BT. Handbook of Ultrasonics and Sonochemistry / Еd. Ashokkumar M. Springer Singapore, Singapore. 2015.
  35. Braeutigam P., Franke M., Schneider R.J. et al. // Water Res. 2012. V. 46. P. 2469. DOI: https://doi.org/10.1016/j.watres.2012.02.013.
  36. Wojnárovits L., Tóth T., Takács E. // Crit. Rev. Environ. Sci. Technol. 2018. V. 48. P. 575. doi: 10.1080/10643389.2018.1463066.
  37. Wojnárovits L., Takács E. // Chemosphere. 2019. doi: 10.1016/j.chemosphere.2018.12.156.
  38. Kusic H., Peternel I., Ukic S. et al. // Chem. Eng. J. 2011. V. 172. P. 109. doi: 10.1016/j.cej.2011.05.076.
  39. Wang J., Wang S. // Chem. Eng. J. 2018. V. 334. P. 1502. doi: 10.1016/j.cej.2017.11.059.
  40. Özdemir C., Öden M.K., Şahinkaya S. et al. // Color. Technol. 2011. V. 127. P. 268. DOI: https://doi.org/10.1111/j.1478-4408.2011.00310.x.
  41. Serna-Galvis E.A., Silva-Agredo J., Giraldo-Aguirre A.L. et al. // Sci. Total Environ. 2015. V. 524–525. P. 354. DOI: https://doi.org/10.1016/ j.scitotenv.2015.04.053.
  42. Yi C., Lu Q., Wang Y. et al. // Ultrason. Sonochem. 2018. V. 43. P. 156. DOI: https://doi.org/10.1016/ j.ultsonch.2018.01.013.
  43. Gogate P.R., Pandit A.B. // Adv. Environ. Res. 2004. V. 8. P. 501. DOI: https://doi.org/10.1016/S1093-0191(03)00032-7.
  44. Wang X., Zhang Y. // J. Hazard. Mater. 2009. V. 161. P. 202. DOI: https://doi.org/10.1016/j.jhazmat.2008.03.073.
  45. Joshi R.K., Gogate P.R. // Ultrason. Sonochem. 2012. V. 19. P. 532. DOI: https://doi.org/10.1016/j.ultsonch.2011.11.005.
  46. Saharan V.K., Badve M.P., Pandit A.B. // Chem. Eng. J. 2011. V. 178. P. 100. DOI: https://doi.org/10.1016/j.cej.2011.10.018.
  47. Bu L., Shi Z., Zhou S. // Sep. Purif. Technol. 2016. V. 169. P. 59. DOI: https://doi.org/10.1016/j.seppur.2016.05.037.
  48. Ismail L., Ferronato C., Fine L. et al. // Environ. Sci. Pollut. Res. 2018. V. 25. P. 2651. doi: 10.1007/s11356-017-0629-3.
  49. Wang J., Wang S. // Chem. Eng. J. 2021. V. 411. P. 128392. doi: 10.1016/j.cej.2020.128392.
  50. Buxton G.V., Greenstock C.L., Helman W.P. et al. // J. Phys. Chem. Ref. Data. 1988. V. 17. P. 513. doi: 10.1063/1.555805.
  51. Lee Y.-M., Lee G., Zoh K.-D. // J. Hazard. Mater. 2021. V. 403. P. 123591. DOI: https://doi.org/10.1016/j.jhazmat.2020.123591.
  52. Darsinou B., Frontistis Z., Antonopoulou M. et al. // Chem. Eng. J. 2015. V. 280. P. 623. doi: 10.1016/j.cej.2015.06.061.
  53. Khandarkhaeva M., Batoeva A., Sizykh M. et al. // J. Environ. Manage. 2019. V. 249. P. 109348. doi: 10.1016/j.jenvman.2019.109348.
  54. Machulek A., Ermírio F., Moraes J., Okano L. et al. // Photochem. Photobiol. Sci. 2009. V. 8. P. 985. doi: 10.1039/b900553f.
  55. Benkelberg H.-J., Warneck P. // J. Phys. Chem. 1995. V. 99. P. 5214. doi: 10.1021/j100014a049.
  56. Guerra-Rodríguez S., Rodríguez E., Singh D.N. et al. // Water. 2018. V. 10. doi: 10.3390/w10121828.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of laboratory installation (a) and cavitation chamber (b): 1 - pump, 2 - cavitation chamber, 2.1 - nozzle, 2.2 - piezoelements, 2.3 - cavitation cloud, 3 - high frequency generators 1.7 MHz, 4 - thermostat.

Download (176KB)
3. Fig. 2. Destruction of CEF in different oxidative systems: [CEF] = 36 μM, [PS] = 2 mM, Rvx=5.0 atm.

Download (181KB)
4. Fig. 3. Effect of Fe2+ concentration on the degradation of CEF in the hybrid GAC/PS/Fe2+ system: [CEF] = 36 μM, [PS] = 360 μM, Pvh = 5 atm.

Download (90KB)
5. Fig. 4. Effect of persulfate concentration on the degradation of CEF in the hybrid GAC/PS/Fe2+ system: [CEF] = 36 μM, [Fe2+] = 100 μM, Pvh = 5 atm.

Download (113KB)
6. Fig. 5. Effect of initial concentration of ceftriaxone on its degradation in the hybrid GAC/PS/Fe2+ system: [PS]=360 μM, [Fe2+]=100 μM, Pvx = 5 atm.

Download (118KB)
7. Fig. 6. Effect of inlet pressure on ceftriaxone degradation in the hybrid GAC/PS/Fe2+ system: [CEF] = 36 μM, [PS] = 360 μM, [Fe2+] = 100 μM.

Download (97KB)
8. Fig. 7. Effect of inorganic anions on the degradation of CEF in the hybrid GAC/PS/Fe2+ system: [CEF] = 36 μM, [PS] = 360 μM, [Fe2+] = 100 μM, [Cl-] = 10 mM, [SO42-] = 10 mM, [HCO3-] = 10 mM, P = 5 atm.

Download (108KB)

Copyright (c) 2024 Russian Academy of Sciences