Thermochemical Characteristics of 2,6-Di-tert-butyl-para-benzoquinone
- Authors: Goryunova P.E.1, Pashanova K.I.2, Novichkov G.A.1, Smirnova N.N.1, Piskunov A.V.2, Markin A.V.1
-
Affiliations:
- Lobachevsky State University
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
- Issue: Vol 97, No 11 (2023)
- Pages: 1543-1546
- Section: ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ
- Submitted: 27.02.2025
- Published: 01.11.2023
- URL: https://kld-journal.fedlab.ru/0044-4537/article/view/669154
- DOI: https://doi.org/10.31857/S0044453723110092
- EDN: https://elibrary.ru/VLNVBT
- ID: 669154
Cite item
Abstract
The combustion energy of crystalline 2,6-di-tert-butyl-para-benzoquinone was determined by static-bomb combustion calorimetry at T = 298.15 K. The standard molar enthalpies of combustion and formation of the compound were calculated using the experimental values of combustion energies. The obtained thermochemical characteristics of 2,6-di-tert-butyl-para-benzoquinone were compared with the literature data for previously studied benzoquinone derivatives.
About the authors
P. E. Goryunova
Lobachevsky State University
Email: markin@chem.unn.ru
603022, Nizhny Novgorod, Russia
K. I. Pashanova
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: markin@chem.unn.ru
603950, Nizhny Novgorod, Russia
G. A. Novichkov
Lobachevsky State University
Email: markin@chem.unn.ru
603022, Nizhny Novgorod, Russia
N. N. Smirnova
Lobachevsky State University
Email: markin@chem.unn.ru
603022, Nizhny Novgorod, Russia
A. V. Piskunov
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: markin@chem.unn.ru
603950, Nizhny Novgorod, Russia
A. V. Markin
Lobachevsky State University
Author for correspondence.
Email: markin@chem.unn.ru
603022, Nizhny Novgorod, Russia
References
- Pereyra C.E., Dantas R.F., Ferreira S.B. et al. // Cancer Cell Int. 2019. V. 19. P. 1. https://doi.org/10.1186/s12935-019-0925-8
- Campora M., Francesconi V., Schenone S. et al. // Pharmaceuticals. 2021. V. 14. P. 1. https://doi.org/10.3390/ph14010033
- Bakasso S., Lamien-Meda A., Lamien C.E. et al. // Pak. J. Biol. Sci. 2008. V. 11. P. 1429–1435. https://doi.org/10.3923/pjbs.2008.1429.1435
- Ma Q., Wei R., Sang Z. // Nat. Prod. Commun. 2020. V. 15. P. 1. https://doi.org/10.1177/1934578X20902898
- Bringmann G., Mutanyatta-Comar J., Knauer M. et al. // Nat. Prod. Rep. 2008. V. 25. P. 696. https://doi.org/10.1039/B803784C
- Jali B.R. // Biointerface Res. Appl. Chem. 2021. V. 11. P. 11679. https://doi.org/10.33263/BRIAC114.1167911699
- Balachandran C., Al-Dhabi N.A., Duraipandiyan V. et al. // Biotechnol. Lett. 2021. V. 43. P. 1005. https://doi.org/10.1007/s10529-021-03089-y
- El-Najjar N., Gali-Muhtasib H., Ketola R.A. et al. // Phytochem. Rev. 2011. V. 10. P. 353. https://doi.org/10.1007/s11101-011-9209-1
- Khan A., Tania M., Fu S. et al.// Oncotarget. 2017. V. 8. P. 51907. https://doi.org/10.18632/oncotarget.17206
- Ballout F., Habli Z., Rahal O.N. et al // Drug Discov. Today. 2018. V. 23. P. 1089–1098. https://doi.org/10.1016/j.drudis.2018.01.043
- Ahmad A., Mishra R.K., Vyawahare A., et al. // Saudi Pharm. J. 2019. V. 27. P. 1113–1126. https://doi.org/10.1016/j.jsps.2019.09.008
- Sahoo P.M.S., Behera S., Behura R. et al. // Biointerface Research in Appl. Chem. 2022. V. 12. P. 3247. https://doi.org/10.33263/BRIAC123.32473258
- Kelso G.F., Porteous C.M., Coulter C.V. et al. // J. Biol. Chem. 2001. V. 276. P. 4588. https://doi.org/10.1074/jbc.M009093200
- Xiong R., Siegel D., Ross D. // Toxicol. Appl. Pharmacol. 2014. V. 280. P. 285. https://doi.org/10.1007/s12640-018-9953-8
- Olson K.R., Clear K.J., Derry P.J. et al. // Free Radic. Biol. Med. 2022. V. 182. P. 119. https://doi.org/10.1016/j.freeradbiomed.2022.02.018
- Chatron N., Hammed A., Benoit E. et al. // Nutrients. 2019. V. 11. P. 1. https://doi.org/10.3390/nu11010067
- Stone M.D., Nelsestuen G.L. Vitamin K: Blood Coagulation and Use in Therapy. Encyclopedia of Biological Chemistry. Elsevier. 2004. P. 394. https://doi.org/10.1016/B0-12-443710-9/00738-9
- Tran T., Saheba E., Arcerio A.V. et al. // Bioorg. Med. Chem. 2004. V. 12. P. 4809–4813. https://doi.org/10.1007/s00044-016-1550-x
- Lobermann F., Weisheit L., Trauner D. // Org. Lett. 2013. V.15. P. 4324. https://doi.org/10.1021/ol401787n
- Hielscher R., Yegres M., Voicescu M. et al. // Biochemistry. 2013. V. 52. P. 8993. https://doi.org/10.1021/bi4009903
- Lu X., Altharawi A., Gut J. et al. // Med. Chem. Lett. 2012. V. 3. P. 1029. https://doi.org/10.1021/ml300242v
- Caille J.R., Debuigne A., Jérôme R. // Macromolecules. 2005. V. 38. P. 27. https://doi.org/10.1021/MA048561O
- Hodge P., Gautrot J.E. // Polym. Int. 2009. V. 58. P. 261. https://doi.org/10.1002/PI.2528
- Riikka R. Anthraquinones from the fungus Dermocybe sanguinea as textile dyes. University of Helsinski, Helsinski, 2002. 107 p.
- Dulo B., Phan K., Githaiga J. // Waste and Biomass Valorization. 2021. V. 12. P. 12: 6339–6374. https://doi.org/10.1007/s12649-021-01443-9
- Ankudinov N.M., Nelyubina Yu.V., Perekalin D.S. // Chem. Eur. J. 2022. V. 28. P. 1. https://doi.org/10.1002/chem.202200195
- Er S., Suh C., Marshak M.P. et al. // Chem. Sci. 2015. V. 6. P. 885. https://doi.org/10.1039/c4sc03030c
- Pashanova K.I., Abakumov G.A., Markin A.V. et al. // J. Chem. Thermodyn. 2016. V. 92. P. 76. https://doi.org/10.1016/j.jct.2015.09.003
- Pashanova K.I., Goryunova P.E., Sologubov S.S. et al. // J. Chem. Eng. Data. 2021. V. 66. P. 1970. https://doi.org/10.1021/acs.jced.0c01042
- Omura K. // Synthesis. 1998. V. 1998. P. 1145. https://doi.org/10.1055/s-1998-2118
- Lebedev B., Kulagina T., Smirnova N. et al. // Macromol. Chem. Phys. 2004. V. 205. P. 230. https://doi.org/10.1002/macp.200300039
- Vanderzee C.E., Månsson M., Sunner S. // J. Chem. Thermodyn. 1972. V. 4. P. 533. https://doi.org/10.1016/0021-9614(72)90075-4
- Rossini F.D. Experimental Thermochemistry. Interscience, New York, 1956. P. 75.
- Wagman D.D., Evans W.H., Parker V.B. et al. // J. Phys. Chem. Ref. Data 1982. V. 11. Suppl. 2.
- Washburh E.W. // J. Res. Natl. Bur. Standards. 1933. V. 10. P. 525.
- Cox J.D., Wagman D.D., Medvedev V.A. CODATA Key Values for Thermodynamics. Hemisphere Publishing Corp.: New York, 1989.
- Pilcher G., Sutton L.E. // J. Chem. Soc. 1956. P. 2695.
Supplementary files
