Масс-спектрометрическое исследование испарения гидроксиапатита до температуры 2200 К

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Масс-спектрометрическим эффузионным методом Кнудсена впервые до температуры 2200 К идентифицирован состав газовой фазы и определены парциальные давления молекулярных форм пара при испарении гидроксиапатита. Испарение Ca10(PO4)6(OH)2 проводилось из эффузионной камеры Кнудсена, изготовленной из вольфрама. Установлено, что в интервале температур 1200–1300 К наблюдается дегидратация Ca10(PO4)6(OH)2 с образованием Ca3P2O8, который при дальнейшем повышении температуры до 1750–2200 К переходит в пар в виде PO, атомарного кальция и кислорода.

Толық мәтін

Рұқсат жабық

Авторлар туралы

С. Лопатин

Институт химии силикатов им. И. В. Гребенщикова РАН

Хат алмасуға жауапты Автор.
Email: sergeylopatin2009@yandex.ru
Ресей, 199034, Санкт-Петербург

А. Селютин

Санкт-Петербургский государственный университет

Email: sergeylopatin2009@yandex.ru
Ресей, 199034, Санкт-Петербург

В. Столярова

Институт химии силикатов им. И. В. Гребенщикова РАН; Санкт-Петербургский государственный университет

Email: sergeylopatin2009@yandex.ru
Ресей, 199034, Санкт-Петербург; 199034, Санкт-Петербург

Әдебиет тізімі

  1. Баринов С.М., Комлев В.С. Биокерамика на основе фосфатов кальция. М.: Наука, 2006. 204 с.
  2. Вихров С.П., Холмина Т.А., Бегун П.И. Биомедицинское материаловедение. М.: Горячая линия – Телеком, 2006. 383с. (Vikhrov S.P., Kholmina T.A. Biomedical materials science. M.: Hotline – Telecom, 2006. 383 p.)
  3. Манабу С. Полимеры медицинского назначения. М.: Медицина, 1981. 248 с. (Manabu S. Polymers for medical purposes. M.: Medicine, 1981. 248 p.)
  4. Simske S.J., Ayers R.A., Simske S.J., Bateman T.A. Porous materials for bone engineering. // Mater. Sci. Forum. 1997. V. 250. P. 151. doi: 10.4028/ href='www.scientific.net/MSF.250.151' target='_blank'>www.scientific.net/MSF.250.151
  5. Dorozhkin S.V. // Ceram. Intern. 2015. V. 41. № 10. P. 13913. doi: 10.1016/j.ceramint.2015.08.004
  6. Rahaman M.N., Yao A., Bal B.S., et al. // J. Amer. Ceram. Soc. 2007. V. 7. № 90. P 1965. doi: 10.1111/j.1551-2916.2007.01725.x
  7. Scholz M., Blanchfield J.P., Bloom D.L., et al. // Sci. Techn. 2011. № 71. P. 1791. doi: 10.1016/j.compscitech.2011.08.017
  8. Лыткина Д.Н. Получение и физико-химические свойства пористых биосовместимых композиционных материалов на основе гидроксиапатита и сополимера лактида и гликолида. Дис… канд. техн. наук. Томск, 2020. 159с. (Lytkina D.N. Preparation and physicochemical properties of porous biocompatible composite materials based on hydroxyapatite and a copolymer of lactide and glycolide. // PhD Thesis. Tomsk, 2020. 159 p.)
  9. Liu H., Webster T.J. // Biomaterials. 2007. V. 28. № 2. P. 354. doi: 10.1016/j.biomaterials.2006.08.049
  10. Бакунова Н.В., Баринов С.М., Иевлев В.М., и др. // Материаловедение. 2010. № 12. С. 11. (Bakunova N.V., Barinov S.M., Iievlev V.M., Komlev V.S., Titiv D.D. // Mater. Sci. 2010. № 12. P. 11.)
  11. Kim H.W., Noh Y.J., Koh Y.H., et al. // Biomaterials. 2002. V. 23. P. 4113. doi: 10.1016/S0142-9612(02)00150-3
  12. Богданова Е.А., Скачков В.М., Скачкова О.В., Сабирзянов Н.А. // Неорган. материалы. 2020. Т. 56. № 2. С. 181. (Bogdanova E.A., Skachkov V.M., Skachkova O.V., Sabirzyanov N.A. // Inorg. Mater. 2020. V. 56. N2. P. 181.) doi: 10.31857/S0002337X20020037
  13. Баринов С.М., Иевлев В.М., Комлев В.С., и др. // Конденсированные среды и межфазные границы. 2010. Т. 12. № 1. С. 22. (Barinov S.M., Iievlev V.M., Komlev V.S., et al. // Condensed Matter and Interphase Boundaries. 2010. V. 12. № 1. P. 22.)
  14. Guidara A., Chaari K., Fakhfakh S., Bouaziz J. // Mater. Chem. Phys. 2017. V. 202. December. P. 358. doi: 10.1016/j.matchemphys.2017.09.039
  15. Богданова Е.А., Сабирзянов Н.А. // Материаловедение. 2014. № 10. С. 53. (Bogdanova E.A., Sabirzyanov N.A. // Mater. Sci. 2014. № 10. P. 53.)
  16. Лопатин С.И., Шугуров С.М., Тюрнина З.Г., Тюрнина Н.Г. // Физика и химия стекла. 2021. Т. 47. № 1. С. 50. (Lopatin S.I., Shugurov S.M., Tyurnina Z.G., Tyurnina N.G. // Glass Phys. Chem. 2021. V. 47. № 1. P. 38.) doi: 10.1134/S1087659621010077
  17. Лопатин С.И. // Физика и химия стекла. 2022. Т. 48. № 2. С. 163. Lopatin S.I. // Glass Phys. Chem. 2022. V. 48. № 2. P. 117. doi: 10.1134/S1087659622020055
  18. Lias S.G., Bartmess J.E., Liebman J.F., et al. // J. Phys. Chem. Ref. Data. 1988. P. 1.
  19. Paule R.C., Mandel J. // Pure Appl. Chem. 1972. V. 31. N3. P. 371. doi: 10.1351/pac197231030371
  20. Mann J.B. // J. Chem. Phys. 1967. V. 46. № 5. P. 1646.
  21. Drowart J., Chatillon C., Hastie J., Bonnell D. // Pure Appl. Chem. 2005. V. 77. № 4. P. 683.
  22. Locardi B., Pazzaglia U.E., Gabbi C., Profico B. // Biomaterials. 1993. V. 14. № 6. P. 437. doi: 10.1016/0142-9612(93)90146-s.
  23. Лопатин С.И., Семенов Г.А., Гребенникова И.А. Масс-спектрометрическое исследование процессов термической диссоциации фосфатов кальция. // Деп. ВИНИТИ. 15.05.1985. № 3294-85.
  24. Лопатин С.И. // ЖОХ. 1997. Т. 67. Вып. 2. С. 208. (Lopatin S.I. // Rus. J. Gen. Chem. 1997. V. 67. № 2. P. 208.)

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. 1. Diffractogram of synthesized Ca10(PO4)6(OH)2.

Жүктеу (84KB)
3. Fig. 2. Dependences of partial pressures of molecular forms of vapor above hydroxyapatite on temperature and evaporation time.

Жүктеу (33KB)

© Russian Academy of Sciences, 2024