Low-temperature synthesis of highly ordered lithium-cobalt double phosphates with improved electrochemical characteristics in lithium nitrate melt

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A low-temperature technique for preparation of highly dispersed powders of lithium-cobalt double phosphates with a highly ordered crystal lattice and a given morphology is proposed. The electrochemical performance and cyclic life of the obtained compounds are shown to exceed the respective characteristics of the known analogs. The proposed method can be extended to obtain a wide range of electrode materials for lithium-ion batteries with olivine structure.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Zharov

Federal Research Center “Kola Scientific Center of the Russian Academy of Sciences”

Хат алмасуға жауапты Автор.
Email: n.zharov@ksc.ru

I. V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Ресей, Apatity

М. Maslova

Federal Research Center “Kola Scientific Center of the Russian Academy of Sciences”

Email: n.zharov@ksc.ru

I. V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Ресей, Apatity

V. Semushin

Federal Research Center “Kola Scientific Center of the Russian Academy of Sciences”

Email: n.zharov@ksc.ru

I. V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Ресей, Apatity

Әдебиет тізімі

  1. Xinxin Z., Guangchuan L., Dan L. // RSC Adv. 2017. V. 7. P. 37588. https://doi.org/10.1039/C7RA04714B.
  2. Zülke A., Li Y., Keil P., et al. // Batteries & Supercaps. 2021. V. 4. № 6. P. 934. https://doi.org/10.1002/batt.202100046.
  3. Song, S., Peng, X., Huang, K., et al. // Nanoscale Res. Lett. 2020. V. 15. P. 110. https://doi.org/10.1186/s11671-020-03335-8.
  4. Yang X., Lin M., Zhen G., et al. // Adv. Funct. Mater. 2020. V. 30. P. 2004664. https://doi.org/10.1002/adfm.202004664.
  5. Lyu Y., Wu X., Wang K., et al. // Adv. Energy Mater. 2021. V. 11. P. 2000982. https://doi.org/10.1002/aenm.202000982.
  6. Tolganbek N., Yerkinbekova Y., Kalybekkyzy S., et al. // J. Alloys Compd. 2021. V. 882. P. 160. https://doi.org/10.1016/j.jallcom.2021.160774.
  7. Jiangtao H., Weiyuan H., Luyi Y., et al. // Nanoscale. 2020. V. 12. № 28. P. 15036. http://dx.doi.org/10.1039/D0NR03776A.
  8. Wani T.A., Suresh G. // J. Energy Storage. 2021. V. 44. P. 103. http://dx.doi.org/10.1016/j.est.2021.103307.
  9. Zhang M., Garcia-Araez N., Hector A. // J. Mater. Chem. A. 2018. V. 6. № 30. P. 14483. http://dx.doi.org/10.1039/C8TA04063J.
  10. Markevich E., Sharabi R., Gottlieb H., et al. // Electrochem. Commun. 2012. V. 15. № 1. P. 22. https://doi.org/10.1016/j.elecom.2011.11.014.
  11. Wu X., Meledina M., Tempel H., et al. // J. Power Sources. 2020. V. 450. P. 227. https://doi.org/10.1016/j.jpowsour.2020.227726.
  12. Wu X., Meledina M., Barthel J., et al. // Energy Storage Mater. 2019. V. 22. P. 138. https://doi.org/10.1016/j.ensm.2019.07.004.
  13. Hou Y., Chang K., Li B., et al. // Nano Res. 2018. V. 11. P. 2424. https://doi.org/10.1007/s12274-017-1864-0.
  14. Zhaojin L., Zhenzhen P., Hui Z., et al. // Nano Lett. 2016. V. 16. № 1. P. 795. https://doi.org/10.1021/acs.nanolett.5b04855.
  15. Murukanahally Kempaiah D., Quang T., Takaaki T., et al. // RSC Adv. 2014. V. 4. https://doi.org/10.1039/C4RA10689J.
  16. Zharov N.V., Maslova M.V., Ivanenko V.I., et al. // Russ. J. Phys. Chem. 2023. V. 97. P. 2529. https://doi.org/10.1134/S0036024423110365.
  17. Wu B., Xu H., Mu D., et al. // J. Power Sources. 2016. V. 304. P. 181. https://doi.org/10.1016/j.jpowsour.2015.11.023.
  18. Truong Q., Devaraju M.K., Ganbe Y., et al. // Sci Rep. 2014. V. 4. P. 3975. https://doi.org/10.1038/srep03975.
  19. Truong Q., Devaraju M.K., Honma I. // J. Mater. Chem. 2014. V. 2. P. 3975 https://doi.org/10.1039/C4TA03566F.
  20. Manzi, J.; Curcio, M.; Brutti, S. // Nanomater. 2015. V. 5. P. 2212. https://doi.org/10.3390/nano5042212.
  21. Maeyoshi Y., Miyamoto S., Noda Y., et al. // J. Power Sources. 2017. V. 337. P. 92. https://doi.org/10.1016/j.jpowsour.2016.10.106.
  22. Ludwig J., Marino C., Haering D., et al. // RSC Adv. 2016. V. 6. № . 86. P. 82984. https://dx.doi.org/10.1039/C6RA19767A.
  23. Örnek A. // J. Chem. Eng. 2018. V. 331. P. 501. https://doi.org/10.1016/j.cej.2017.09.007.
  24. Truong Q.D., Devaraju M.K., Tomai T., et al. // ACS Appl. Mater. Interfaces. 2013. V. 5. P. 26. https://doi.org/10.1021/am403018n.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Diffraction patterns of the obtained precursors: a) NCP1, b) NCP2, c) bar diagram of the standard (PDF card No. 01-089-6598).

Жүктеу (182KB)
3. Fig. 2. SEM images of the obtained precursors: a) NCP1, b) NCP2.

Жүктеу (208KB)
4. Fig. 3. Diffraction patterns of synthesized LiCoPO4: a) LCP1, b) LCP2, c) bar diagram of the standard (PDF card No. 01-086-5257).

Жүктеу (212KB)
5. Fig. 4. SEM images of target products: a) LCP1; b) LCP2.

Жүктеу (222KB)
6. Fig. 5. IR spectra of the obtained LCP2 (1) and LCP1 (2).

Жүктеу (80KB)
7. Fig. 6. Charge and discharge curves of the synthesized powders: a) charge curve LCP1; b) charge curve LCP2; c) discharge curve LCP1; d) discharge curve LCP2; curves 1, 2, 3 correspond to the 1st, 25th and 50th charge/discharge cycles. E is the capacity, P is the potential.

Жүктеу (191KB)

© Russian Academy of Sciences, 2025