Initiation of Artificial Radioactivity of Impurity Elements in a Lead Cathode under Conditions of a Glow Discharge

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The possibility of initiation of nuclear chemical processes in the Pb cathode during a glow discharge in a low-temperature deuterium-containing nonequilibrium plasma leading to a significant (at times) decrease in the isotope content of some impurity elements (specifically, Zn) and increasing others (specifically, W, Fe, Mn, and Al). Such processes can be understood by introducing the existence in nuclear matter of metastable non-nucleon excitations of internal shaking (isu-states) formed by initiating actions on the nuclei of electrons with high (on chemical scales) kinetic energy Ee ~ 3–5 eV.

Sobre autores

S. Timashev

National Research Nuclear University (MEPhI)

Email: serget@mail.ru
115409, Moscow, Russia

I. Savvatimova

National Research Nuclear University (MEPhI)

Email: serget@mail.ru
115409, Moscow, Russia

S. Poteshin

National Research Nuclear University (MEPhI)

Email: serget@mail.ru
115409, Moscow, Russia

S. Ryndya

National Research Nuclear University (MEPhI)

Email: serget@mail.ru
115409, Moscow, Russia

N. Kargin

National Research Nuclear University (MEPhI)

Autor responsável pela correspondência
Email: serget@mail.ru
115409, Moscow, Russia

Bibliografia

  1. Тимашев С.Ф., Савватимова И.Б., Потешин С.С. и др. // Физика элементарных частиц и атомного ядра. 2022. Т. 53. Вып. 1. С. 110. https://doi.org/10.1134/S1063779622010051
  2. Тимашев С.Ф., Симакин А.В., Шафеев Г.А. // Журн. физ. химии. 2014. Т. 88. № 11. С. 1805.
  3. Timashev S. // Phys. Science Intern. J. 15 (2): 1–25, 2017; Article no. PSIJ.34889 ISSN: 2348-0130: http://www.sciencedomain.org/issue/2727.
  4. Тимашев С.Ф. // РЭНСИТ. 2017. Т. 9. № 1. С. 37. http://rensit.ru/vypuski/article/200/9(1)37-51.pdf.
  5. Thomas S.A., Abdalla F.D., Lahav O. // Phys. Rev. Lett. 2010. V. 105. № 3. P. 031301. https://doi.org/10.1103/PhysRevLett.105.031301
  6. Barmina E.V., Sukhov I.A., Lepekhin N.M. et al. // Quantum Electronics. 2013. V. 43. P. 591.https://doi.org/10.1070/QE2013v043n06ABEH014879
  7. Андреев С.Н., Шафеев Г.А. // РЭНСИТ. 2017. Т. 9. № 1. С. 65. http://rensit.ru/vypuski/article/200/9(1)65-73.pdf.
  8. Simakin A.V., Shafeev G.A. // Physics of Wave Phenomena. 2008. V. 16. № 4. P. 268. https://doi.org/10.3103/S1541308X08040031
  9. Karabut A.B., Kucherov Ya.R., Savvatimova I.B. // Phys. Letters A. 1992. V. 170. P. 265.
  10. Savvatimova I.B. // J. Condensed Matter Nuclear Sci. 2012. V. 6. P. 181. www.iscmns.org/CMNS/JCMNS-Vol6.pdf.
  11. Сафаров З.Х. Физика атомного ядра и элементарных частиц. Казань: РИЦ “Школа”, 2008. 280 с.
  12. Lattimer J.M., Pethick C.J., Prakash M., Haensel P. // Phys. Rev. Lett. 1991. V. 66. P. 2701.
  13. Detraz C. // Phys. Lett. B. 1977. V. 66. P. 333.
  14. Новацкий В.Г., Сакута С.Б., Степанов Д.Н. // Письма в ЖЭТФ. Т. 98. Вып. 11. С. 747. https://doi.org/10.7868/S0370274X13230033
  15. Iwamura Y., Sakano M., Itoh T. // Jpn. J. Appl. Phys. 2002. V. 41. P. 4642.
  16. Iwamura Y., Tsuruga S., Itoh T. Deuterium Permeation Induced Transmutation Experiments using Nano-Structured Pd/CaO/Pd Multilayer Thin Film // 2014 CF/LANR(Cold Fusion / Lattice Assisted Nuclear Reactions). Colloquium at MIT, March. 21–23, 2014, Massachusetts Institute of Technology, Cambridge, MA, USA.
  17. Арцимович Л.А., Доброхотов Е.И., Лукьянов С.Ю. и др. // Атомная энергия. 1956. Т. 3. С. 84.
  18. Курчатов И.В. // Успехи физ. наук. 1956. Т. 59. Вып. 4. С. 603.
  19. Klimov A.I., Belov N.K., Tolkunov B.N. // J. of Physics: Conference Series. 2020. V. 1698. P. 012034.
  20. Тимашев С.Ф. // Журнал физ. химии. 2018. Т. 92. № 6. С. 883. https://doi.org/10.1134/S0036024418060183

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © С.Ф. Тимашев, И.Б. Савватимова, С.С. Потешин, С.М. Рындя, Н.И. Каргин, 2023