Saturated vapor pressures and enthalpies of vaporization of malic acid esters
- Авторлар: Yamshchikova Y.F.1, Portnova S.V.1, Krasnykh E.L.1
-
Мекемелер:
- Samara State Technical University
- Шығарылым: Том 99, № 1 (2025)
- Беттер: 23-31
- Бөлім: ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ
- ##submission.dateSubmitted##: 01.06.2025
- ##submission.datePublished##: 17.04.2025
- URL: https://kld-journal.fedlab.ru/0044-4537/article/view/681865
- DOI: https://doi.org/10.31857/S0044453725010026
- EDN: https://elibrary.ru/EIXTNJ
- ID: 681865
Дәйексөз келтіру
Аннотация
The saturated vapor pressures of malic acid diesters and linear С1-С5 alcohols are determined using the transpiration method in the temperature range of 303–369 K. The enthalpies of vaporization of esters at 298.2 K are determined on the basis of the obtained data. Correlations of the enthalpies of vaporization from Kovats indices and number of carbon atoms are obtained. The contributions of the hydroxyl group and intermolecular hydrogen bonds to are estimated. The author’s QSPR method for calculating the values of the enthalpies of vaporization of esters of hydroxy acids is modified.
Негізгі сөздер
Толық мәтін

Авторлар туралы
Yu. Yamshchikova
Samara State Technical University
Email: kinterm@samgtu.ru
Ресей, Samara
S. Portnova
Samara State Technical University
Email: kinterm@samgtu.ru
Ресей, Samara
E. Krasnykh
Samara State Technical University
Хат алмасуға жауапты Автор.
Email: kinterm@samgtu.ru
Ресей, Samara
Әдебиет тізімі
- Vinoth Kumar R., Pakshirajan K., Pugazhenthi G. Malic and Succinic Acid, in: Platf. Chem. Biorefinery, Elsevier, 2016. Р. 159. https://doi.org/10.1016/B978-0-12-802980-0.00009-2
- Martínez-Zepeda D.L., Meza-González B., Álvarez-Hernández M.L. et al. // Dyes Pigments. 2021. V. 188 P. 109239. https://doi.org/10.1016/j.dyepig.2021.109239
- Li Z.-J., Hong P.-H., Da Y.-Y. et al. // Metab. Eng. 2018. V. 48. Р. 25. https://doi.org/10.1016/j.ymben.2018.05.010
- Lee J.A., Ahn J.H., Lee S.Y. Organic Acids: Succinic and Malic Acids, in: Compr. Biotechnol., Elsevier, 2019. Р. 172. https://doi.org/10.1016/B978-0-444-64046-8.00159-2
- Kaminský J., Horáčková F., Biačková N. et al. // J. Phys. Chem. B. 2021. V. 125. Р. 11350. https://doi.org/10.1021/acs.jpcb.1c05480
- Kuz’mina N.S., Prokhorova A.A., Portnova S.V., Krasnykh E.L. // Polym. Sci. Ser. B. 2022. V. 64. Р. 636. https://doi.org/10.1134/S156009042270052X
- Li Y., Miao Y., Yang L. et al. // Chem. Eng. J. 2023. V. 455. P. 140572. https://doi.org/10.1016/j.cej.2022.140572
- Yang R., Wang B., Li M. et al. // Ind. Crops Prod. 2019. V. 136. Р. 121. https://doi.org/10.1016/j.indcrop.2019.04.073
- Ljubimova J.Y., Fujita M., Ljubimov A.V. et al. // Nanomed. 2008. V. 3. Р. 247. https://doi.org/10.2217/17435889.3.2.247
- Loyer P., Cammas-Marion S. // J. Drug Target. 2014. V. 22. Р. 556. https://doi.org/10.3109/1061186X.2014.936871
- Nguyen H.V.D., De Vries R., Stoyanov S.D. // ACS Sustainable Chem. Eng. 2020. V. 8. Р. 14166. https://doi.org/10.1021/acssuschemeng.0c04982
- Yan Y., An H., Liu Y. et al. // Int. J. Biol. Macromol. 2023. V. 242. P. 125056. https://doi.org/10.1016/j.ijbiomac.2023.125056
- Xi Y., Fan F., Zhang X. // Green Carbon. 2023. V. 1. Р. 118. https://doi.org/10.1016/j.greenca.2023.10.005
- Jiang Y., Ye X., Zheng T. et al. // Chin. J. Chem. Eng. 2021. V. 30. Р. 105. https://doi.org/10.1016/j.cjche.2020.10.017
- Werpy T., Petersen G. Top Value Added Chemicals from Biomass: Volume I – Results of Screening for Potential Candidates from Sugars and Synthesis Gas, 2004. 77 p. https://doi.org/10.2172/15008859
- Kövilein A., Kubisch C., Cai L., Ochsenreither K. // J. Chem. Technol. Biotechnol. 2020. V. 95. Р. 513. https://doi.org/10.1002/jctb.6269
- Liu J., Xie Z., Shin H. et al. // J. Biotechnol. 2017. V. 253. Р. 1. https://doi.org/10.1016/j.jbiotec.2017.05.011
- Dai Z., Zhou H., Zhang S. et al. // Bioresour. Technol. 2018. V. 258. Р. 345. https://doi.org/10.1016/j.biortech.2018.03.001
- Su C.-Y., Yu C.-C., Chien I.-L., Ward J.D. // Ind. Eng. Chem. Res. 2013. V. 52. Р. 11070. https://doi.org/10.1021/ie303192x
- Li Q.-Z., Jiang X.-L., Feng X.-J. et al. // J. Microbiol. Biotechnol. 2016. V. 26. Р. 1. https://doi.org/10.4014/jmb.1505.05049
- Stephenson R.M., Malanowski S. Handbook of the Thermodynamics of Organic Compounds, Springer Netherlands, Dordrecht, 1987. https://doi.org/10.1007/978-94-009-3173-2
- Emel’yanenko V.N., Yermalayeu A.V., Portnova S.V. et al. // J. Chem. Thermodyn. 2019. V. 128. Р. 55–67. https://doi.org/10.1016/j.jct.2018.07.029
- Portnova S.V., Yamshchikova Y.F., Krasnykh E.L. et al. // J. Chem. Eng. Data. 2020. V. 65. Р. 2566–2577. https://doi.org/10.1021/acs.jced.9b01195
- Portnova S.V., Yamshchikova Yu.F., Krasnykh E.L. // Russ. J. Phys. Chem. A. 2019. V. 93. Р. 577–583. https://doi.org/10.1134/S0036024419020213
- Krasnykh E.L., Portnova S.V. // J. Struct. Chem. 2017. V. 58. Р. 706. https://doi.org/10.1134/S0022476617040096
- Krasnykh E.L., Portnova S.V. // Ibid. 2016. V. 57. Р. 437. https://doi.org/10.1134/S0022476616030033
- Verevkin S.P., Sazonova A.Yu., Emel’yanenko V.N. et al. // J. Chem. Eng. Data. 2015. V. 60. Р. 89–103. https://doi.org/10.1021/je500784s
- Portnova S.V., Kuzmina N.S., Yamshchikova Y.F., Krasnykh E.L. // Ibid. 2022. V. 67. Р. 2323. https://doi.org/10.1021/acs.jced.2c00267
- Lipp S.V., Krasnykh E.L., Verevkin S.P. // J. Chem. Eng. Data. 2011. V. 56. Р. 800. https://doi.org/10.1021/je100231g
- Portnova S.V., Krasnykh E.L., Levanova S.V. // Russ. J. Phys. Chem. A. 2016. V. 90. Р. 990. https://doi.org/10.1134/S0036024416050253
- Verevkin S.P., Kozlova S.A., Emel’yanenko V.N. et al. // J. Chem. Eng. Data. 2006. V. 51. Р. 1896. https://doi.org/10.1021/je0602418
- Verevkin S.P. // J. Chem. Eng. Data. 2017. V. 52. Р. 301. https://doi.org/10.1021/je060419q
- Roganov G.N., Pisarev P.N., Emel’yanenko V.N., Verevkin S.P. // J. Chem. Eng. Data. 2005. V. 50. Р. 1114. https://doi.org/10.1021/je049561m
- Linstrom P. // NIST Standard Reference Database 1997. V. 69. https://doi.org/10.18434/T4D303
Қосымша файлдар
