Глицинат и тирозинат магния: расчет структуры и ИК-спектров методом функционала плотности

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Методом функционала плотности с использованием B3LYP в базисах 6–31G(d, p), 6–31G минимизированы энергии и построены структурно динамические модели глицината и тирозината магния. Рассчитаны геометрические параметры, и частоты нормальных колебаний в гармоническом приближении в ИК-спектре моделей представленных соединений. Осуществлен синтез комплекса магния(II) с глицином и тирозином из водных растворов хлорида магния и соответствующих аминокислот. Содержание аминокислот в синтезированных соединениях определяли формольным титрованием по методу Серенсена. Содержание ионов магния(II) – комплексонометрическим титрованием. Представлены ИК-спектры синтезированных соединений, измеренные в диапазоне 500–4000 см–1. Интерпретированы расчетные и экспериментальные ИК-спектры синтезированных соединений. Проведено сравнение расчетных ИК-спектров со спектрами синтезированных соединений, сделаны выводы о их строении. Данные о координации соединений ионов магния с АК, могут помочь достоверно установить строение их малоизученных комплексов, а также совершенствовать методы синтеза данных комплексных соединений заранее определенного состава.

Полный текст

Доступ закрыт

Об авторах

Д. В. Беспалов

Омский государственный университет им. Ф. М. Достоевского

Автор, ответственный за переписку.
Email: d.v.bespalov@rambler.ru

Химический факультет

Россия, Омск, 644077

О. А. Голованова

Омский государственный университет им. Ф. М. Достоевского

Email: d.v.bespalov@rambler.ru

Химический факультет

Россия, Омск, 644077

Список литературы

  1. Добрынина Н.А. Бионеорганическая химия. М.: МГУ, 2007. 36 с.
  2. Скальный А.В. Химические элементы в физиологии и экологии человека. М.: Издательский дом «ОНИКС 21 век»: Мир, 2004. 216 с.
  3. Юдина Н.В., Торшин И.Ю., Громова О.А., и др. // Кардиология. 2016. Т. 56. № 10. С. 80. DOI: https://dx.doi.org/10.18565/cardio.2016.10.80-89
  4. Senni K., Foucault-Bertaud A., Godeau G. // Magnes Res. 2003 V. 16. № 1. P. 70.
  5. Левчук Л.В., Бородулина Т.В., Санникова Н.Е., и др. // Уральский медицинский журнал. 2017. Т. 149. № 5. С. 11.
  6. Шилов А.М., Авшалумов А.Ш., Марковский В.Б., и др. // Русский медицинский журнал. 2009. Т. 17. № 8. С. 576.
  7. Golovanova О.A., Solodyankina A.A. // J. Crystallography Reports. 2017. V. 62. № 2. P. 342.
  8. Abiri B., Vafa M. // Trials. 2020. V.21. № 1. P. 225 DOI: https://doi.org/10.1186/s13063-020-4122-9
  9. Waheed E.J., Obaid S.M., Ali-Abbas A.A.S // Research J.of Pharmaceutical, Biological and Chemical Sciences. 2019. V.10. № 2. P. 1624.
  10. Golovanova O.A., Tomashevsky I.A. // Rus. journal of Phys. Chem. 2019. V. 93. № 1. P. 7. DOI: https://doi.org/10.1134/S0036024419010084
  11. Seelig M.S. // J. Am. College of Nutrition. 1993. V. 12. P. 442. doi: 10.1080/07315724.1993.10718335
  12. Накоскин А.Н., Воронцов Б.С., Лунева С.Н., и др. // Современные проблемы науки и образования 2012. № 3. С. 3.
  13. Babkov L.M., Moiseikina E.A., Korolevich M.V. // J. of Applied Spectroscopy. 2010. V. 77. № 2. P. 166. DOI: https://doi.org/10.1007/s10812-010-9310-z
  14. Бутырская Е.В., Нечаева Л.С., Шапошник В.А, и др. // Сорбционные и хроматографические процессы. 2012. Т. 12. № 4. С. 501.
  15. Kon V. // UFN. 2002. V. 172. № 3. P. 336. doi: 10.3367/UFNr.0172.200203e.0336
  16. Mamand D., Qadr H. // Russian journal of physical chemistry. 2022. V. 96. P. 2155. DOI: https://doi.org/10.1134/S0036024422100193
  17. Игнатов С.К. // Нижний Новгород: ННГУ им. Н.И. Лобачевского. 2019. 94 с.
  18. Bespalov D.V., Golovanova O.A. // J. Butlerov Communications. 2021. V.65. № 1. P. 15. DOI: https://doi.org/10.37952/ROI-jbc-01/21-65-1-15

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Осадки под электронным микроскопом XSP-140 с разрешением х80: а) АК – глицин, б) соединение Mg2+: Gly, в) АК – тирозин, г) соединение Mg2+: Tyr.

Скачать (296KB)
3. Рис. 2. Расчетная структура исследуемых соединений: а) 3D-модель глицината магния, б) структурная формула глицината магния, в) 3D-модель тирозината магния, г) структурная формула тирозината магния.

Скачать (125KB)
4. Рис. 3. ИК-спектр синтезированного соединения Mg2+:Gly.

Скачать (78KB)
5. Рис. 4. ИК-спектр синтезированного соединения Mg2+: Tyr.

Скачать (86KB)

© Российская академия наук, 2024