Ion-Selective Membrane Electrode for Determination of the Octahydrotriborate Anion
- 作者: Kopytin A.V.1, Turyshev E.S.1, Madraimov M.S.2, Kubasov A.S.1, Zhizhin K.Y.1, Shpigun L.K.1, Kuznetsov N.T.1
- 
							隶属关系: 
							- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Mendeleev University of Chemical Technology of Russia
 
- 期: 卷 68, 编号 1 (2023)
- 页面: 10-16
- 栏目: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://kld-journal.fedlab.ru/0044-457X/article/view/665318
- DOI: https://doi.org/10.31857/S0044457X22601432
- EDN: https://elibrary.ru/GWLWQG
- ID: 665318
如何引用文章
详细
An ion-selective electrode (ISE) based on a plasticized polyvinyl chloride membrane chemically doped with tetradecylammonium octahydrotriborate ([(С10H21)4N+]
) has been developed. It is shown that the electrode has a reversible potentiometric response with respect to the octahydrotriborate anion in the presence of a number of other inorganic anions. The influence of the concentration of the electrode-active material and the nature of the plasticizer in the membrane phase on the electrochemical characteristics of the fabricated sensor have been studied. The optimal composition of the ion-sensitive membrane has been found. It has been found that the developed sensor provides a wide range of detectable concentrations of 
 (1 × 10–7…1 × 10–2) and a low detection limit (10–7.3 M). The new ISE can be recommended for direct potentiometric detection of free octahydrotriborate anions in technological aqueous solutions.
作者简介
A. Kopytin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: tyrishev@gmail.com
				                					                																			                												                								119991, Moscow, Russia						
E. Turyshev
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: tyrishev@gmail.com
				                					                																			                												                								119991, Moscow, Russia						
M. Madraimov
Mendeleev University of Chemical Technology of Russia
														Email: tyrishev@gmail.com
				                					                																			                												                								125047, Moscow, Russia						
A. Kubasov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: tyrishev@gmail.com
				                					                																			                												                								119991, Moscow, Russia						
K. Zhizhin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: tyrishev@gmail.com
				                					                																			                												                								119991, Moscow, Russia						
L. Shpigun
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: tyrishev@gmail.com
				                					                																			                												                								119991, Moscow, Russia						
N. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: tyrishev@gmail.com
				                					                																			                												                								119991, Moscow, Russia						
参考
- Stock A. The Hydrides of Boron and Silicon. Cornell University Press, 1933.
- Bykov A.Y., Zhizhin K.Y., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2014. V. 59. № 13. P. 1539. https://doi.org/10.1134/S0036023614130026
- Hagemann H. // Molecules. 2021. V. 26. № 24. P. 7425. https://doi.org/10.3390/molecules26247425
- Kubasov A.S., Novikov I.V., Starodubets P.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 984. https://doi.org/10.1134/S0036023622070130
- Avdeeva V.V., Kubasov A.S., Korolenko S.E. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 628. https://doi.org/10.1134/S0036023622050023
- Титов Л.В. // Журн. неорган. химии. 2003. V. 48. № 10. P. 1613.
- Goedde D.M., Windler G.K., Girolami G.S. // Inorg. Chem. 2007. V. 46. № 7. P. 2814. https://doi.org/10.1021/ic0621300
- Pylypko S., Zadick A., Chatenet M. et al. // J. Power Sources. 2015. V. 286. P. 10. https://doi.org/10.1016/j.jpowsour.2015.03.143
- Fu H., Wang X., Shao Y. et al. // Int. J. Hydrogen Energy. 2016. V. 41. № 1. P. 384. https://doi.org/10.1016/j.ijhydene.2015.10.081
- Moury R., Gigante A., Remhof A. et al. // Dalton Trans. 2020. V. 49. № 35. P. 12168. https://doi.org/10.1039/D0DT02170A
- Gigante A., Leick N., Lipton A.S. et al. // ACS Appl. Energy Mater. 2021. V. 4. № 4. P. 3737. https://doi.org/10.1021/acsaem.1c00159
- Суровцев Е.Л., Хаин Е.С., Шевченко Ю.Н. // Журн. аналит. химии. 1980. V. 35. № 7. P. 1439.
- Копытин А.В., Жижин К.Ю., Быков А.Ю. Мембрана ионоселективного электрода для определения октагидротриборатного аниона. Пат. RU2621888C1, 2017.
- Buck R.P. // Theory and principles of membrane electrodes. Ion-Selective Electrodes Anal. Chem. 1978. P. 1
- Bakker E., Pretsch E. // Angew. Chem.Int. Ed. 2007. V. 46. № 30. P. 5660. https://doi.org/10.1002/anie.200605068
- Zdrachek E., Bakker E. // Anal. Chem. 2019. V. 91. № 1. P. 2. https://doi.org/10.1021/acs.analchem.8b04681
- Craggs A., Moody D.J., Thomas J.D.R. // J. Chem. Educ. 1974. V. 51. № 8. P. 541.
- Bykov A.Y., Razgonyaeva G.A., Mal’tseva N.N. et al. // Russ. J. Inorg. Chem. 2012. V. 57. № 4. P. 471. https://doi.org/10.1134/S0036023612040055
- Bykov A.Y., Mal’tseva N.N., Generalova N.B. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 11. P. 1321. https://doi.org/10.1134/S003602361311003X
- Turyshev E.S., Kopytin A.V., Zhizhin K.Y. et al. // Talanta. 2022. V. 241. P. 123239. https://doi.org/10.1016/j.talanta.2022.123239
- Coetzee C.J., Freiser H. // Chem. 1969. V. 41. № 8. P. 1128.
- Kopytin A.V., Zhizhin K.Y., Urusov Y.I. et al. // J. Anal. Chem. 2011. V. 66. № 7. P. 666. https://doi.org/10.1134/S1061934811070070
- Kopytin A.V., Zhizhin K.Y., Urusov Y.I. et al. // J. Anal. Chem. 2012. V. 67. № 2. P. 168. https://doi.org/10.1134/S1061934812020074
- Wegmann D., Weiss H., Ammann D. et al. // Mikrochim. Acta. 1984. V. 84. № 1–2. P. 1. https://doi.org/10.1007/BF01204153
- Матвейчук Ю.В., Рахманько Е.М., Окаев Е.Б. Ионоселективные электроды на основе высших четвертичных аммониевых солей, обратимые к двухзарядным неорганическим анионам. Минск, 2018.
- Matveichuk Y.V. // Anal. Chem. Lett. 2018. V. 8. № 4. P. 428.
- Schaller U., Bakker E., Pretsch E. // Anal. Chem. 1995. V. 67. № 18. P. 3123. https://doi.org/10.1021/ac00114a005
- Бережковская О.М., Макарова Е.Д., Матерова Е.А. // Вестн. ЛГУ. 1986. № 4. P. 65.
- Смирнова А.Л., Грекович А.Л., Матерова Е.А. // Электрохимия. 1987. V. 10. P. 1187.
- Kopytin A.V., German K.E., Zhizhin K.Y. et al. // Sens. Actuators, B: Chem. 2020. V. 310. P. 127853. https://doi.org/10.1016/j.snb.2020.127853
- Buck R.P., Lindner E. // Pure Appl. Chem. 1994. V. 66. № 12. P. 2527. https://doi.org/10.1351/pac199466122527
- Szigeti Z., Vigassy T., Bakker E. et al. // Electroanalysis. 2006. V. 18. № 13–14. P. 1254. https://doi.org/10.1002/elan.200603539
- Huang Z., Chen X., Yisgedu T. et al. // Inorg. Chem. 2011. V. 50. № 8. P. 3738. https://doi.org/10.1021/ic2000987
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					




