Estimated hansen solubility parameters of low-dimensional vanadium, niobium and tantalum dichalcogenides
- Authors: Nikonov К.S.1, Menshikova Т.К.1, Brekhovskikh М.N.1
- 
							Affiliations: 
							- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
 
- Issue: Vol 69, No 5 (2024)
- Pages: 672-680
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://kld-journal.fedlab.ru/0044-457X/article/view/666525
- DOI: https://doi.org/10.31857/S0044457X24050038
- EDN: https://elibrary.ru/YFMQDC
- ID: 666525
Cite item
Abstract
Low-dimensional flakes of transitional metal dichalcogenides TaX2 (X = S, Se, Te), VSe2 and NbSe2 were acquired using liquid-phase exfoliation process. Hansen solubility parameters of those dispersions were estimated by measuring extinction in a number of various liquid environments. Amount of low-dimensional particles of dichalcogenides in a sample increases with decrease of Hansen distance between dichalcogenide and exfoliation medium. We propose a method to qualitatively estimate the impact exfoliation medium has on the size of forming particles and demonstrate how decrease of the absolute value of δpolar and δhydrogen in examined systems leads to decrease in size of forming flakes.
About the authors
К. S. Nikonov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
							Author for correspondence.
							Email: nikonovk.s@yandex.ru
				                					                																			                												                	Russian Federation, 							Moscow						
Т. К. Menshikova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: nikonovk.s@yandex.ru
				                					                																			                												                	Russian Federation, 							Moscow						
М. N. Brekhovskikh
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: nikonovk.s@yandex.ru
				                					                																			                												                	Russian Federation, 							Moscow						
References
- Coleman J.N., Lotya M., O’Neill A. et al. // Science. 2011. V. 331. № 6017. Р. 568. https://doi.org/10.1126/science.1194975
- Hildebrand H.J. Solubility of Non-electrolytes. N.Y.: Reinhold Publ. Corp., 1936. 203 p.
- Süß S., Sobisch T., Peukert W. et al. // Adv. Powder Technol. 2018. V. 29. № 7. P. 1550. https://doi.org/10.1016/j.apt.2018.03.018
- Venkatram Sh., Kim Ch., Chandrasekaran A., Ramprasad R. // J. Chem. Inf. Model. 2019. V. 59. № 10. P. 4188. https://doi.org/10.1021/acs.jcim.9b00656
- Садовников С.И. // Журн. неорган. химии. 2023. V. 68. № 3. P. 411. https://doi.org/10.31857/S0044457X22601559
- Mathieu D. // ACS Omega. 2018. V. 3. № 12. P. 17049. https://doi.org/10.1021/acsomega.8b02601
- Gilliam M.S., Yousaf A., Guo Y., et al. // Langmuir. 2021. V. 37. № 3. Р. 1194. https://doi.org/10.1021/acs.langmuir.0c03138
- Cunningham G., Lotya M., Cucinotta C.S. et al. // ACS Nano. 2012. V. 6. № 4. P. 3468. https://doi.org/10.1021/nn300503e
- Kumar S., Pratap S., Joshi N. et al. // Micro and Nanostructures. 2023. V. 181. P. 207627. https://doi.org/10.1016/j.micrna.2023.207627
- Eaglesham D.J., Withers R.L., Bird D.M. // J. Phys. C: Solid State Phys. 1986. V. 19. № 3. P. 359. https://doi.org/10.1088/0022–3719/19/3/006
- Xi X., Zhao L., Wang Z. et al. // Nature Nanotech. 2015. V. 10. P. 765. https://doi.org/10.1038/nnano.2015.143
- Zhou L., Sun Ch., Li X. et al. // Nano Express. 2020. V. 15. P. 20. https://doi.org/10.1186/s11671-020-3250-1
- Mahajan M., Kallatt S., Dandu M. et al. // Commun. Phys. 2019. V. 2. Р. 88. https://doi.org/10.1038/s42005-019-0190-0
- Wu J., Peng J., Yu Zh. et al. // J. Am. Chem. Soc. 2018. V. 140. № 1. Р. 493. https://doi.org/10.1021/jacs.7b11915
- Yang W., Gan L., Li H. et al. // Inorg. Chem. Front. 2016. V. 3. Р. 433. https://doi.org/10.1039/C5QI00251F
- Jia Y., Liao Y., Cai H. // Nanomaterials. 2022. V. 12. P. 2075. https://doi.org/10.3390/nano12122075
- Wang J., Guo C., Guo W. et al. // Chinese Phys. B. 2019. V. 28. № 4. Р. 046802. https://doi.org/10.1088/1674-1056/28/4/046802
- Li H., Tan Y., Liu P. et al. // Adv. Mater. 2016. V. 28. № 40. P. 8945. https://doi.org/10.1002/adma.201602502
- Wang F., Mao J. // Mater. Horiz. 2023. V. 10. № 5. P. 1780. https://doi.org/10.1039/D3MH00072A
- Никонов К.С., Ильясов А.С., Бреховских М.Н. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1222. https://doi.org/10.1134/S0036023620090120
- Yang L., Zhao R., Wu D. et al. // Sensors. 2021. V. 21. № 1. P. 239. https://doi.org/10.3390/s21010239
- Hansen Ch.M. Hansen Solubility Parameters: A User’s Handbook. Boca Raton, London, NY: CRC Press, 2007. 544 p.
- Segets D., Gradl J., Taylor R.К. et al. // ACS Nano. 2009. V. 3. № 7. Р. 1703. https://doi.org/10.1021/nn900223b
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					