Thermodynamic Modeling and Experimental Implementation of the Synthesis of Vanadium Oxide Films
- Authors: Shestakov V.A.1,2, Seleznev V.A.3, Mutilin S.V.3, Kichay V.N.1, Yakovkina L.V.1
- 
							Affiliations: 
							- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University of Architecture and Civil Engineering
- Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences
 
- Issue: Vol 68, No 5 (2023)
- Pages: 651-657
- Section: ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ
- URL: https://kld-journal.fedlab.ru/0044-457X/article/view/665259
- DOI: https://doi.org/10.31857/S0044457X23600019
- EDN: https://elibrary.ru/SOHBQS
- ID: 665259
Cite item
Abstract
The paper describes the thermodynamic modeling and experimental study of the synthesis of vanadium oxide films at various temperatures from the tetrakis(ethylmethylaminovanadium) V[NC3H8]4 precursor in the presence of oxygen in an argon atmosphere. The thermodynamic modeling was carried out using the calculation of chemical equilibria based on the minimization of the Gibbs energy of the system. In the experimental part of the paper, the films were synthesized by the atomic layer deposition procedure. The thermodynamic modeling and experimental results agree with each other and can be used to develop procedures for the synthesis of film coatings based on vanadium oxides.
About the authors
V. A. Shestakov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University of Architecture and Civil Engineering
														Email: vsh@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia; 630008, Novosibirsk, Russia						
V. A. Seleznev
Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences
														Email: vsh@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
S. V. Mutilin
Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences
														Email: vsh@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
V. N. Kichay
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: vsh@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
L. V. Yakovkina
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
							Author for correspondence.
							Email: vsh@niic.nsc.ru
				                					                																			                												                								630008, Novosibirsk, Russia						
References
- Jager M.F., Ott C., Kraus P.M. et al. // Proc. Natl. Acad. Sci. 2017. V. 114. № 36. P. 9558. https://doi.org/10.1073/pnas.1707602114
- Morin F.J. // Phys. Rev. Lett. 1959. V. 3. № 1. P. 34. https://doi.org/10.1103/PhysRevLett.3.34
- Shao Z., Cao X., Luo H. et al. // NPG Asia Mater. 2018. V. 10. № 7. P. 581. https://doi.org/10.1038/s41427-018-0061-2
- Liu K., Lee S., Yang S. et al. // Mater. Today. 2018. V. 21. № 8. P. 875. https://doi.org/10.1016/j.mattod.2018.03.029
- Lu C., Lu Q., Gao M. et al. // Nanomaterials. 2021. V. 11. № 1. P. 114. https://doi.org/10.3390/nano11010114
- Schlag H.J., Scherber W. // Thin Solid Films. 2000. V. 366. № 1–2. P. 28. https://doi.org/10.1016/S0040-6090(00)00711-2
- Kana Kana J.B., Ndjaka J.M., Vignaud G. et al. // Opt. Commun. 2011. V. 284. № 3. P. 807. https://doi.org/10.1016/j.optcom.2010.10.009
- Sun J., Pribil G.K. // Appl. Surf. Sci. 2017. V. 421. P. 819. https://doi.org/10.1016/j.apsusc.2016.09.125
- Briggs R.M., Pryce I.M., Atwater H.A. // Opt. Express. 2010. V. 18. № 11. P. 11192. https://doi.org/10.1364/oe.18.011192
- Prinz V.Y., Mutilin S.V., Yakovkina L.V. et al. // Nanoscale. 2020. V. 12. № 5. P. 3443. https://doi.org/10.1039/C9NR08712E
- Mutilin S.V., Prinz V.Y., Seleznev V.A. et al. // Appl. Phys. Lett. 2018. V. 113. № 4. P. 043101. https://doi.org/10.1063/1.5031075
- Mutilin S.V., Prinz V.Y., Yakovkina L.V. et al. // CrystEngComm. 2021. V. 23. № 2. P. 443. https://doi.org/10.1039/D0CE01072C
- You Zhou, Ramanathan S. // Proc. IEEE. 2015. V. 103. № 8. P. 1289. https://doi.org/10.1109/JPROC.2015.2431914
- Yang Z., Ko C., Ramanathan S. // Annu. Rev. Mater. Res. 2011. V. 41. № 1. P. 337. https://doi.org/10.1146/annurev-matsci-062910-100347
- Nakano M., Shibuya K., Ogawa N. et al. // Appl. Phys. Lett. 2013. V. 103. № 15. P. 153503. https://doi.org/10.1063/1.4824621
- Kats M.A., Blanchard R., Zhang S. et al. // Phys. Rev. X. 2013. V. 3. № 4. P. 041004. https://doi.org/10.1103/PhysRevX.3.041004
- Rios C., Hosseini P., Wright C.D. et al. // Adv. Mater. 2014. V. 26. № 9. P. 1372. https://doi.org/10.1002/adma.201304476
- Faucheu J., Bourgeat-Lami E., Prevot V. // Adv. Eng. Mater. 2018. P. 1800438. https://doi.org/10.1002/adem.201800438
- Ke Y., Wang S., Liu G. et al. // Small. 2018. V. 14. № 39. P. 1802025. https://doi.org/10.1002/smll.201802025
- Liu T.-J.K., Kuhn K. CMOS and Beyond. Cambridge: Cambridge University Press, 2014. https://doi.org/10.1017/CBO9781107337886
- Zhu H.-F., Du L.-H., Li J. et al. // Appl. Phys. Lett. 2018. V. 112. № 8. P. 081103. https://doi.org/10.1063/1.5020930
- Ko C., Yang Z., Ramanathan S. // ACS Appl. Mater. Interfaces. 2011. V. 3. № 9. P. 3396. https://doi.org/10.1021/am2006299
- Qazilbash M.M., Brehm M., Chae B.-G. et al. // Science. 2007. V. 318. № 5857. P. 1750. https://doi.org/10.1126/science.1150124
- Zimmers A., Aigouy L., Mortier M. et al. // Phys. Rev. Lett. 2013. V. 110. № 5. P. 056601. https://doi.org/10.1103/PhysRevLett.110.056601
- Chang Y.J., Yang J.S., Kim Y.S. et al. // Phys. Rev. B. 2007. V. 76. № 7. P. 075118. https://doi.org/10.1103/PhysRevB.76.075118
- Qazilbash M.M., Tripathi A., Schafgans A.A. et al. // Phys. Rev. B. 2011. V. 83. № 16. P. 165108. https://doi.org/10.1103/PhysRevB.83.165108
- Stroud D. // Phys. Rev. B. 1975. V. 12. № 8. P. 3368. https://doi.org/10.1103/PhysRevB.12.3368
- Inomata N., Usuda T., Yamamoto Y. et al. // Sensors Actuators A Phys. 2022. V. 346. P. 113823. https://doi.org/10.1016/j.sna.2022.113823
- Li G., Xie D., Zhong H. et al. // Nat. Commun. 2022. V. 13. № 1. P. 1729. https://doi.org/10.1038/s41467-022-29456-5
- Yakovkina L.V., Mutilin S.V., Prinz V.Y. et al. // J. Mater. Sci. 2017. V. 52. № 7. P. 4061. https://doi.org/10.1007/s10853-016-0669-y
- Zhang Y., Xiong W., Chen W. et al. // Nanomaterials. 2021. V. 11. № 2. P. 1. https://doi.org/10.3390/nano11020338
- Xue X., Zhou Z., Peng B. et al. // RSC Adv. 2015. V. 5. № 97. P. 79249. https://doi.org/10.1039/C5RA13349A
- Shi R., Shen N., Wang J. et al. // Appl. Phys. Rev. 2019. V. 6. № 1. https://doi.org/10.1063/1.5087864
- Li J., An Z., Zhang W. et al. // Appl. Surf. Sci. 2020. V. 529. P. 147108. https://doi.org/10.1016/j.apsusc.2020.147108
- Brahlek M., Zhang L., Lapano J. et al. // MRS Commun. 2017. V. 7. № 1. P. 27. https://doi.org/10.1557/mrc.2017.2
- Prasadam V.P., Bahlawane N., Mattelaer F. et al. // Mater. Today Chem. 2019. V. 12. P. 396. https://doi.org/10.1016/j.mtchem.2019.03.004
- Bai G., Niang K.M., Robertson J. // J. Vac. Sci. Technol. A. 2020. V. 38. № 5. P. 052402. https://doi.org/10.1116/6.0000353
- Niang K.M., Bai G., Robertson J. // J. Vac. Sci. Technol. A. 2020. V. 38. № 4. P. 042401. https://doi.org/10.1116/6.0000152
- Kozen A.C., Joress H., Currie M. et al. // J. Phys. Chem. C. 2017. V. 121. № 35. P. 19341. https://doi.org/10.1021/acs.jpcc.7b04682
- Шестаков В.А., Косинова М.Л. // Изв. АН. Сер. хим. 2021. Т. 70. № 2. С. 283. https://doi.org/10.1007/s11172-021-3083-9
- Шестаков В.А., Косинова М.Л. // Журн. неорг. химии. 2021. Т. 66. № 11. С. 1585. https://doi.org/10.31857/S0044457X21110155
- Шестаков В.А., Косяков В.И., Косинова М.Л. // Журн. неорган. химии. 2020. Т. 65. № 6. С. 829.https://doi.org/10.31857/S0044457X20060215
- Шестаков В.А., Яковкина Л.В., Кичай В.Н. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1746. https://doi.org/10.31857/S0044457X22600608
- Merenkov I.S., Katsui H., Khomyakov M.N. et al. // J. Eur. Ceram. Soc. 2019. V. 39. № 16. P. 5123. https://doi.org/10.1016/j.jeurceramsoc.2019.08.006
- Титов В.А., Косяков В.И., Кузнецов Ф.А. Проблемы электронного материаловедения. Новосибирск: Наука, 1986.
- Kang Y.-B. // J. Eur. Ceram. Soc. 2012. V. 32. № 12. P. 3187. https://doi.org/10.1016/j.jeurceramsoc.2012.04.045
- Barin I. Termodynamical Data of Pure Substances. N.Y., 1989.
- Mahmoodinezhad A., Janowitz C., Naumann F. et al. // J. Vac. Sci. Technol. A. 2020. V. 38. № 2. P. 022404. https://doi.org/10.1116/1.5134800
- Henkel K., Gargouri H., Gruska B. et al. // J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 2013. V. 32. № 1. P. 01A107. https://doi.org/10.1116/1.4831897
- Haeberle J., Henkel K., Gargouri H. et al. // Beilstein J. Nanotechnol. 2013. V. 4. № 1. P. 732. https://doi.org/10.3762/bjnano.4.83
- Powder diffraction Files Inorganic Phases. International Centre for Diffraction Data, Pennsylvania, USA, 2010
- Ureña-Begara F., Crunteanu A., Raskin J.P. // Appl. Surf. Sci. 2017. V. 403. P. 717. https://doi.org/10.1016/j.apsusc.2017.01.160
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					





