Thermodynamic Modeling and Experimental Implementation of the Synthesis of Vanadium Oxide Films
- Авторлар: Shestakov V.A.1,2, Seleznev V.A.3, Mutilin S.V.3, Kichay V.N.1, Yakovkina L.V.1
- 
							Мекемелер: 
							- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University of Architecture and Civil Engineering
- Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences
 
- Шығарылым: Том 68, № 5 (2023)
- Беттер: 651-657
- Бөлім: ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ
- URL: https://kld-journal.fedlab.ru/0044-457X/article/view/665259
- DOI: https://doi.org/10.31857/S0044457X23600019
- EDN: https://elibrary.ru/SOHBQS
- ID: 665259
Дәйексөз келтіру
Аннотация
The paper describes the thermodynamic modeling and experimental study of the synthesis of vanadium oxide films at various temperatures from the tetrakis(ethylmethylaminovanadium) V[NC3H8]4 precursor in the presence of oxygen in an argon atmosphere. The thermodynamic modeling was carried out using the calculation of chemical equilibria based on the minimization of the Gibbs energy of the system. In the experimental part of the paper, the films were synthesized by the atomic layer deposition procedure. The thermodynamic modeling and experimental results agree with each other and can be used to develop procedures for the synthesis of film coatings based on vanadium oxides.
Негізгі сөздер
Авторлар туралы
V. Shestakov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University of Architecture and Civil Engineering
														Email: vsh@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia; 630008, Novosibirsk, Russia						
V. Seleznev
Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences
														Email: vsh@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
S. Mutilin
Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences
														Email: vsh@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
V. Kichay
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: vsh@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
L. Yakovkina
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
							Хат алмасуға жауапты Автор.
							Email: vsh@niic.nsc.ru
				                					                																			                												                								630008, Novosibirsk, Russia						
Әдебиет тізімі
- Jager M.F., Ott C., Kraus P.M. et al. // Proc. Natl. Acad. Sci. 2017. V. 114. № 36. P. 9558. https://doi.org/10.1073/pnas.1707602114
- Morin F.J. // Phys. Rev. Lett. 1959. V. 3. № 1. P. 34. https://doi.org/10.1103/PhysRevLett.3.34
- Shao Z., Cao X., Luo H. et al. // NPG Asia Mater. 2018. V. 10. № 7. P. 581. https://doi.org/10.1038/s41427-018-0061-2
- Liu K., Lee S., Yang S. et al. // Mater. Today. 2018. V. 21. № 8. P. 875. https://doi.org/10.1016/j.mattod.2018.03.029
- Lu C., Lu Q., Gao M. et al. // Nanomaterials. 2021. V. 11. № 1. P. 114. https://doi.org/10.3390/nano11010114
- Schlag H.J., Scherber W. // Thin Solid Films. 2000. V. 366. № 1–2. P. 28. https://doi.org/10.1016/S0040-6090(00)00711-2
- Kana Kana J.B., Ndjaka J.M., Vignaud G. et al. // Opt. Commun. 2011. V. 284. № 3. P. 807. https://doi.org/10.1016/j.optcom.2010.10.009
- Sun J., Pribil G.K. // Appl. Surf. Sci. 2017. V. 421. P. 819. https://doi.org/10.1016/j.apsusc.2016.09.125
- Briggs R.M., Pryce I.M., Atwater H.A. // Opt. Express. 2010. V. 18. № 11. P. 11192. https://doi.org/10.1364/oe.18.011192
- Prinz V.Y., Mutilin S.V., Yakovkina L.V. et al. // Nanoscale. 2020. V. 12. № 5. P. 3443. https://doi.org/10.1039/C9NR08712E
- Mutilin S.V., Prinz V.Y., Seleznev V.A. et al. // Appl. Phys. Lett. 2018. V. 113. № 4. P. 043101. https://doi.org/10.1063/1.5031075
- Mutilin S.V., Prinz V.Y., Yakovkina L.V. et al. // CrystEngComm. 2021. V. 23. № 2. P. 443. https://doi.org/10.1039/D0CE01072C
- You Zhou, Ramanathan S. // Proc. IEEE. 2015. V. 103. № 8. P. 1289. https://doi.org/10.1109/JPROC.2015.2431914
- Yang Z., Ko C., Ramanathan S. // Annu. Rev. Mater. Res. 2011. V. 41. № 1. P. 337. https://doi.org/10.1146/annurev-matsci-062910-100347
- Nakano M., Shibuya K., Ogawa N. et al. // Appl. Phys. Lett. 2013. V. 103. № 15. P. 153503. https://doi.org/10.1063/1.4824621
- Kats M.A., Blanchard R., Zhang S. et al. // Phys. Rev. X. 2013. V. 3. № 4. P. 041004. https://doi.org/10.1103/PhysRevX.3.041004
- Rios C., Hosseini P., Wright C.D. et al. // Adv. Mater. 2014. V. 26. № 9. P. 1372. https://doi.org/10.1002/adma.201304476
- Faucheu J., Bourgeat-Lami E., Prevot V. // Adv. Eng. Mater. 2018. P. 1800438. https://doi.org/10.1002/adem.201800438
- Ke Y., Wang S., Liu G. et al. // Small. 2018. V. 14. № 39. P. 1802025. https://doi.org/10.1002/smll.201802025
- Liu T.-J.K., Kuhn K. CMOS and Beyond. Cambridge: Cambridge University Press, 2014. https://doi.org/10.1017/CBO9781107337886
- Zhu H.-F., Du L.-H., Li J. et al. // Appl. Phys. Lett. 2018. V. 112. № 8. P. 081103. https://doi.org/10.1063/1.5020930
- Ko C., Yang Z., Ramanathan S. // ACS Appl. Mater. Interfaces. 2011. V. 3. № 9. P. 3396. https://doi.org/10.1021/am2006299
- Qazilbash M.M., Brehm M., Chae B.-G. et al. // Science. 2007. V. 318. № 5857. P. 1750. https://doi.org/10.1126/science.1150124
- Zimmers A., Aigouy L., Mortier M. et al. // Phys. Rev. Lett. 2013. V. 110. № 5. P. 056601. https://doi.org/10.1103/PhysRevLett.110.056601
- Chang Y.J., Yang J.S., Kim Y.S. et al. // Phys. Rev. B. 2007. V. 76. № 7. P. 075118. https://doi.org/10.1103/PhysRevB.76.075118
- Qazilbash M.M., Tripathi A., Schafgans A.A. et al. // Phys. Rev. B. 2011. V. 83. № 16. P. 165108. https://doi.org/10.1103/PhysRevB.83.165108
- Stroud D. // Phys. Rev. B. 1975. V. 12. № 8. P. 3368. https://doi.org/10.1103/PhysRevB.12.3368
- Inomata N., Usuda T., Yamamoto Y. et al. // Sensors Actuators A Phys. 2022. V. 346. P. 113823. https://doi.org/10.1016/j.sna.2022.113823
- Li G., Xie D., Zhong H. et al. // Nat. Commun. 2022. V. 13. № 1. P. 1729. https://doi.org/10.1038/s41467-022-29456-5
- Yakovkina L.V., Mutilin S.V., Prinz V.Y. et al. // J. Mater. Sci. 2017. V. 52. № 7. P. 4061. https://doi.org/10.1007/s10853-016-0669-y
- Zhang Y., Xiong W., Chen W. et al. // Nanomaterials. 2021. V. 11. № 2. P. 1. https://doi.org/10.3390/nano11020338
- Xue X., Zhou Z., Peng B. et al. // RSC Adv. 2015. V. 5. № 97. P. 79249. https://doi.org/10.1039/C5RA13349A
- Shi R., Shen N., Wang J. et al. // Appl. Phys. Rev. 2019. V. 6. № 1. https://doi.org/10.1063/1.5087864
- Li J., An Z., Zhang W. et al. // Appl. Surf. Sci. 2020. V. 529. P. 147108. https://doi.org/10.1016/j.apsusc.2020.147108
- Brahlek M., Zhang L., Lapano J. et al. // MRS Commun. 2017. V. 7. № 1. P. 27. https://doi.org/10.1557/mrc.2017.2
- Prasadam V.P., Bahlawane N., Mattelaer F. et al. // Mater. Today Chem. 2019. V. 12. P. 396. https://doi.org/10.1016/j.mtchem.2019.03.004
- Bai G., Niang K.M., Robertson J. // J. Vac. Sci. Technol. A. 2020. V. 38. № 5. P. 052402. https://doi.org/10.1116/6.0000353
- Niang K.M., Bai G., Robertson J. // J. Vac. Sci. Technol. A. 2020. V. 38. № 4. P. 042401. https://doi.org/10.1116/6.0000152
- Kozen A.C., Joress H., Currie M. et al. // J. Phys. Chem. C. 2017. V. 121. № 35. P. 19341. https://doi.org/10.1021/acs.jpcc.7b04682
- Шестаков В.А., Косинова М.Л. // Изв. АН. Сер. хим. 2021. Т. 70. № 2. С. 283. https://doi.org/10.1007/s11172-021-3083-9
- Шестаков В.А., Косинова М.Л. // Журн. неорг. химии. 2021. Т. 66. № 11. С. 1585. https://doi.org/10.31857/S0044457X21110155
- Шестаков В.А., Косяков В.И., Косинова М.Л. // Журн. неорган. химии. 2020. Т. 65. № 6. С. 829.https://doi.org/10.31857/S0044457X20060215
- Шестаков В.А., Яковкина Л.В., Кичай В.Н. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1746. https://doi.org/10.31857/S0044457X22600608
- Merenkov I.S., Katsui H., Khomyakov M.N. et al. // J. Eur. Ceram. Soc. 2019. V. 39. № 16. P. 5123. https://doi.org/10.1016/j.jeurceramsoc.2019.08.006
- Титов В.А., Косяков В.И., Кузнецов Ф.А. Проблемы электронного материаловедения. Новосибирск: Наука, 1986.
- Kang Y.-B. // J. Eur. Ceram. Soc. 2012. V. 32. № 12. P. 3187. https://doi.org/10.1016/j.jeurceramsoc.2012.04.045
- Barin I. Termodynamical Data of Pure Substances. N.Y., 1989.
- Mahmoodinezhad A., Janowitz C., Naumann F. et al. // J. Vac. Sci. Technol. A. 2020. V. 38. № 2. P. 022404. https://doi.org/10.1116/1.5134800
- Henkel K., Gargouri H., Gruska B. et al. // J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 2013. V. 32. № 1. P. 01A107. https://doi.org/10.1116/1.4831897
- Haeberle J., Henkel K., Gargouri H. et al. // Beilstein J. Nanotechnol. 2013. V. 4. № 1. P. 732. https://doi.org/10.3762/bjnano.4.83
- Powder diffraction Files Inorganic Phases. International Centre for Diffraction Data, Pennsylvania, USA, 2010
- Ureña-Begara F., Crunteanu A., Raskin J.P. // Appl. Surf. Sci. 2017. V. 403. P. 717. https://doi.org/10.1016/j.apsusc.2017.01.160
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Рұқсат ақылы немесе тек жазылушылар үшін
		                                							Рұқсат ақылы немесе тек жазылушылар үшін
		                                					





