Synthesis of Hydroxylapatite Substituted with REE Ions (La3+ and Y3+): Composition, Structure, and Properties
- 作者: Golovanova O.A.1
- 
							隶属关系: 
							- Omsk State University
 
- 期: 卷 68, 编号 3 (2023)
- 页面: 393-400
- 栏目: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://kld-journal.fedlab.ru/0044-457X/article/view/665293
- DOI: https://doi.org/10.31857/S0044457X22700155
- EDN: https://elibrary.ru/JFDLIJ
- ID: 665293
如何引用文章
详细
Substituted hydroxylapatites (HAs) containing various La3+ or Y3+ percentages were prepared. X‑ray powder diffraction, Four-transform IR spectroscopy, and optical spectroscopy verified the formation of substituted hydroxylapatites (La–HA and Y–HA). Inductively coupled plasma atomic emission spectrometry (ICP–AES) verified the presence of REE ions in the solids. Changes in the unit cell parameters of the prepared phases indicated that the REE ions substituted for Ca2+ ions in the hydroxylapatite structure. The lanthanum or yttrium percentage in precipitates increased in response to increasing REE salt concentration (within 1–5 wt %) in the initial solution as shown by chemical analysis; this brought about a decrease in the ratio Ca/P compared to the stoichiometric ratio (1.67). The solubility of the synthesized samples was studied, and it appeared that the cation-substituted hydroxylapatites were less soluble than undoped HA was.
作者简介
O. Golovanova
Omsk State University
							编辑信件的主要联系方式.
							Email: golovanoa2000@mail.ru
				                					                																			                												                								644077, Omsk, Russia						
参考
- Kulwinder K., Singh K.J., Anand V. et al. // Ceram. Int. 2017. V. 43. P. 10097. https://doi.org/10.1016/j.ceramint.2017.05.029
- Wieszczycka K., Staszak K., Woźniak-Budych et al. // Coord. Chem. Rev. 2019. V. 388. P. 248. https://doi.org/10.1016/j.ccr.2019.06.017
- Szcześ A., Hołysz L., Chibowski E. // Adv. Coll. Interface Sci. 2017. V. 249. P. 321. https://doi.org/10.1016/j.cis.2017.04.007
- Furasova A.D., Fakhardo A.F., Milichkoet V.A. et al. // Colloids Surf., B: Biointerfaces. 2017. V. 154. P. 21. https://doi.org/10.1016/j.colsurfb.2017.02.029
- Sherstiuk A.A., Tsymbal S.A., Fakhardo A.F. et al. // ACS Biomater. Sci. Eng. 2021. V. 7. P. 5633. https://doi.org/10.1021/acsbimaterials.1c00973
- Vasylechko V.O., Gryshchouk G.V., Zakordonskiy V.P. et al. // Talanta. 2017. V. 162. P. 1. https://doi.org/10.1016/j.talanta.2017.06.052
- Shen C., Yan T., Wang Y. et al. // J. Lumin. 2017. V. 10. P. 1. https://doi.org/10.1016/j.jlumin.2016.12.018
- Boronat C., Rivera T., Garcia-Guinea J. et al. // Radiat. Phys. Chem. 2017. V. 130. P. 236. https://doi.org/10.1016/j.radphyschem.2016.09.005
- George S., Mehta D., Saharan V.K. // Rev. Chem. Eng. 2020. V. 36. P. 369. https://doi.org/10.1515/revce-2017-0101
- Machadoa T.R., Sczancoskia J.C., Beltrán-Mirb H. et al. // Ceram. Int. 2018. V. 44. P. 236. https://doi.org/10.1016/j.ceramint.2017.09.164
- Kazin P.E., Pogosova M.A., Trusov L.A. et al. // J. Solid-State Chem. 2016. V. 237. P. 349. https://doi.org/10.1016/j.jssc.2016.03.004
- Nasiri N., Clarke C. // National Library of Medicine. 2019. V. 9. P. 449. https://doi.org/10.3390/bios9010043
- Шашкина. Г.А., Сорец В.Ф. // Медицина экстремальных ситуаций. 2017. № 1. С. 101.
- Guoqing Ma. // Mater. Sci. Eng. 2018. V. 688. P. 1. https://doi.org/10.1088/1757-899X/688/3/033057
- Zheng X., Liu M., Hui J. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 20301. https://doi.org/10.1039/c5cp01845e
- Ardanova L.I., Get’man E.I., Loboda S.N. et al. // Inorg. Chem. 2010. V. 49. P. 10687. https://doi.org/10.1021/ic1015127
- Neacsu I.A., Stoica A.E., Vasile B.S. et al. // Nanomaterials. 2019. V. 9. P. 239. https://doi.org/10.3390/nano9020239
- Никитина Ю.О., Петракова Н.В., Демина А.Ю. и др. // Журн. неорган. химии. 2021. Т. 66. С. 951. https://doi.org/10.31857/S0044457X21080171
- Cawthray J.F., Creagh A.L., Haynes C.A. et al. // Inorg. Chem. 2015. V. 54. P. 1440. https://doi.org/10.1021/ic502425e
- Sathishkumar G.D., Karthika A.S. et al. // Ind. Eng. Chem. Res. 2014. V. 53. P. 20145. https://doi.org/10.1021/ie504387k
- Солоненко А.П., Голованова О.А. // Журн. неорган. химии. 2014. Т. 59. С. 12. https://doi.org/10.7868/S0044457X14010188
- Егоров-Тисменко Ю.К. Кристаллография и кристаллохимия. М., 2014. 588 с.
- Томпсон М., Уолш Д.Н. Руководство по спектрометрическому анализу с индуктивно-связанной плазмой. М.: Недра, 1988. 174 с.
- Tsyganova A.A., Golovanova O.A. // Inorg. Mater. 2019. V. 55. № 11. P. 1156. https://doi.org/10.1134/S0020168519110141
- Урусов В.С., Еремин Н.Н. Кристаллохимия. М.: Изд-во Моск. ун-та, 2005. 125 с.
- Tite T., Popa A.C., Balescu L.M. et al. // Materials. 2018. V. 11. P. 2081. https://doi.org/10.3390/ma11112081
- Голованова О.А. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 302. https://doi.org/10.31857/S0044457X20030046
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					




