Initial Stages of the Formation of the Supramolecular Structure of Ca and Mg Oxides
- Autores: Sakovich R.A.1, Shaulov A.Y.1
 - 
							Afiliações: 
							
- Semenov Institute of Chemical Physics, Russian Academy of Sciences
 
 - Edição: Volume 68, Nº 8 (2023)
 - Páginas: 1077-1082
 - Seção: ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ
 - URL: https://kld-journal.fedlab.ru/0044-457X/article/view/665212
 - DOI: https://doi.org/10.31857/S0044457X22601729
 - EDN: https://elibrary.ru/MKVATI
 - ID: 665212
 
Citar
Texto integral
Resumo
The optimal geometries of (CaO)n and (MgO)n clusters at n = 2–30 have been found and the enthalpies of formation of 1D, 2D, and 3D structures have been determined using quantum-chemical DFT calculations. The calculation demonstrates that the formation of linear chains of Ca and Mg oxides practically does not occur, while the formation of two-dimensional (tiled) and three-dimensional (cubic) structures proceeds with a large release of energy. The competing process of formation of molecular rods consisting of planar six-membered rings (MO)3 has been considered, and it has been shown to proceed not through the stage of preliminary formation of six-membered rings, but directly from monomer units.
Sobre autores
R. Sakovich
Semenov Institute of Chemical Physics, Russian Academy of Sciences
														Email: ajushaulov@yandex.ru
				                					                																			                												                								119334, Moscow, Russia						
A. Shaulov
Semenov Institute of Chemical Physics, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: ajushaulov@yandex.ru
				                					                																			                												                								119334, Moscow, Russia						
Bibliografia
- Edmonds J.A., Freund P., Dooley J.J. // Greenhouse Gas Control Technologies. 2001. P. 46.
 - Juan Pablo Mojica-Sánchez, Tania Isabel Zarate-López, José Manuel Flores-Álvarez et al. // Phys. Chem. Chem. Phys. 2019. https://doi.org/10.1039/c9cp05075b
 - Гаркушин И.К., Лаврентьева О.В., Штеренберг А.М. // Физика и химия стекла. 2023. Т. 49. № 2. С. 148. https://doi.org/10.31857/S0132665122100109
 - Gu Guoxuan, Li Sheng, Liu Xin et al. // Ceramics-Silikáty. 2022. V. 66. P. 480. https://doi.org/10.13168/cs.2022.0044480
 - Utamapanya S., Klabunde K.J., Schlup J.R. // Chem. Materials. 1991. V. 3. P. 175.
 - Сергеев Г.Б. Нанохимия. М.: Изд-во МГУ, 2003. 288 с.
 - Суздалев И.П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов М.: КомКнига, 2006. 592 с.
 - Ray N.H. // Inorganic Polymers. London: Acad. Press, 1978. 172 p.
 - Сандитов Д.С., Бартенев Г.М. Физические свойства неупорядоченных структур. Новосибирск: Наука, 1982. 256 с.
 - Фельц А. Аморфные и стеклообразные неорганические твeрдые тела. М.: Мир, 1986. 326 с.
 - Ropp R.C. Inorganic Polymer Glasses. Amsterdam: Elsevier, 1992. 201 p.
 - Сироткин О.С. Безуглеродные полимерные элементооксаны, Дис. … докт. техн. наук. Казань, 1992. 364 с.
 - Шаулов А.Ю., Владимиров Л.В., Грачев А.В. и др. // Химическая физика. 2020. Т. 14. С. 183. https://doi.org/10.1134/S1990793120010157
 - Malliavin M.-J., Coudray C. // J. Chem. Phys. 1997. V. 106. P. 2323.
 - Aguado A., López-Gejo F., López J.M. // J. Chem. Phys. 1999. V. 110. P. 4788.
 - Gutowski M., Skurski P., Li X. et al. // Phys. Rev. Lett. 2000. V. 85. P. 3145.
 - Dong R., Chen X., Wang X. et al. // J. Chem. Phys. 2008. V. 129. P. 044705.
 - Vasili M.L.S., Felle D. et al. // J. Phys. Chem. A. 2010. V. 114. P. 9349.
 - Kwapien K., Sierka M., Döbler J. et al. // Angew. Chem., Int. Ed. 2011. V. 50. P. 1716.
 - Haertelt M., Fielicke A., Meijer G. et al. // Phys. Chem. Phys. 2012. V. 14. P. 2849.
 - Hong L., Wang H., Cheng J. et al. // Comput. Theor. Chem. 2012. V. 980. P. 62.
 - Priynka Batra, Ritu Gaba, Upasana Issar et al. // J. Theor. Chem. 2013. P. 720794. https://doi.org/10.1155/2013/720794
 - Zhang Y., Chen H.S., Yin Y.H. et al. // J. Phys. B: At., Mol. Opt. Phys. 2014. V. 47. P. 025102.
 - Chen Mingyang, Felmy A.R., Dixon D.A. // J. Phys. Chem. A. 2014. V. 118. P. 3136. https://doi.org/10.1021/jp412820z
 - Mingyang Chen, Kanchana Sahan Thanthiriwatte, David A. // J. Phys. Chem. C. 2017. V. 121. P. 23025. https://doi.org/10.1021/acs.jpcc.7b09062
 - Motoyoshi Nakano, Daiki Hebiguchi, Shohei Azuma et al. // J. Phys. Chem. A. 2020. V. 124. P. 101.
 - Gross E.K.U., Kohn W. // Adv. Quantum Chem. 1990. V. 21. P. 255.
 - Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648.
 - Schafer A., Horn H., Ahlrichs R. // J. Chem. Phys. 1992. V. 97. P. 2571.
 - Furche F., Ahlrichs R., Hattig C. et al. // Comput. Mol. Sci. 2014. V. 4. P. 91.
 - Уэллс А.Ф. Строение неорганических веществ. М.: Изд-во иностр. литер., 1948. 690 с.
 - Vasiliu M., Feller D., Gole J.L., Dixon D.A. // J. Phys. Chem. A. 2010. V. 114. P. 9349.
 - Bawa F., Panas I. // Phys. Chem. Chem. Phys. 2002. V. 4. P. 103.
 
Arquivos suplementares
				
			
						
						
					
						
						
									






