Kinetic stability and glass-forming ability of phenacetin by fast scanning calorimetry
- Autores: Lapuk S.E1, Gerasimov A.V1
- 
							Afiliações: 
							- A.M. Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University
 
- Edição: Volume 93, Nº 5 (2023)
- Páginas: 794-800
- Seção: Articles
- URL: https://kld-journal.fedlab.ru/0044-460X/article/view/667013
- DOI: https://doi.org/10.31857/S0044460X23050141
- EDN: https://elibrary.ru/DDAQGH
- ID: 667013
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
In the present work, an amorphous active pharmaceutical ingredient, phenacetin, was obtained by fast scanning calorimetry. The critical cooling rate and kinetic fragility of its supercooled melt were determined. The process of cold crystallization of phenacetin was studied by methods of isothermal and non-isothermal kinetics. It was found that the best correspondence between the two kinetic approaches is observed in the case of using the Nakamura crystallization model. The results obtained can find their application in the development of approaches to obtaining amorphous forms of drugs prone to crystallization.
			                Sobre autores
S. Lapuk
A.M. Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University
A. Gerasimov
A.M. Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University
														Email: alexander.gerasimov@kpfu.ru
				                					                																			                												                														
Bibliografia
- Schittny A., Huwyler J., Puchkov M. // Drug Deliv. 2020. Vol. 27. P. 110. doi: 10.1080/10717544.2019.1704940
- Bhujbal S.V., Mitra B., Jain U., Gong Y., Agrawal A., Karki S., Taylor L.S., Kumar S., Zhou Q.T. // Acta Pharm. Sin. 2021. Vol. 11. P. 2505. doi: 10.1016/j.apsb.2021.05.014
- Alzahrani A., Nyavanandi D., Mandati P., Youssef A.A.A., Narala S., Bandari S., Repka M. // Int. J. Pharm. 2022. Vol. 624. P. P. 121951. doi: 10.1016/j.ijpharm.2022.121951
- Jennotte O., Koch N., Lechanteur A., Evrard B. // Int. J. Pharm. 2020. Vol. 580. P. 119200. doi: 10.1016/j.ijpharm.2020.119200
- Qiang W., Löbmann K., McCoy C.P., Andrews G.P., Zhao M. // Pharmaceutics. 2020.Vol. 12. P. 1. doi: 10.3390/pharmaceutics12070655
- Wang B., Liu F., Xiang J., He Y., Zhang Z., Cheng Z., Liu W., Tan S. // Int. J. Pharm. 2020. Vol. 594. P. 120165. doi: 10.1016/j.ijpharm.2020.120165
- Smeets A., Koekoekx R., Ruelens W., Smet M., Clasen C., Van den Mooter G. // Int. J. Pharm. 2019. Vol. 574. P. 118885. doi: 10.1016/j.ijpharm.2019.118885
- Jakubowska E., Lulek J. // J. Drug Deliv. Sci. Technol. 2021. Vol. 62. P. 102357. doi: 10.1016/j.jddst.2021.102357
- Swallen S.F., Kearns K.L., Mapes M.K.,. Kim Y.S., McMahon R.J., Ediger M.D., Wu T., Yu L., Satija S. // Science. 2007. Vol. 315. P. 353 doi: 10.1126/science.1135795
- Ma X.,Williams R.O. // J. Drug Deliv. Sci. Technol. 2019. Vol. 50. P. 113. doi: 10.1016/j.jddst.2019.01.017
- Razuc M., Grafia A., Gallo L., Ramírez-Rigo M.V., Romañach R.J. // Drug Dev. Ind. Pharm. 2019. Vol. 45. P. 1565. doi: 10.1080/03639045.2019.1641510
- Dołęga A., Juszyńska-Gałązka E., Deptuch A., Baran S., Zieliński P.M. // Thermochim. Acta. 2021. Vol. 707. P. 1 doi: 10.1016/j.tca.2021.179100
- Wabuyele B.W., Sotthivirat S., Zhou G.X., Ash J., Dhareshwar S.S. // J. Pharm. Sci. 2017. Vol. 106. P. 579. doi: 10.1016/j.xphs.2016.10.014
- Chmiel K., Knapik-Kowalczuk J., Jachowicz R., Paluch M. // Eur. J. Pharm. Biopharm. 2019. Vol. 136. P. 231. doi: 10.1016/j.ejpb.2019.01.025
- Ivanisevic I., McClurg R.B., Schields P.J. In: Pharmaceutical Sciences Encyclopedia. 2010. P. 1. doi: 10.1002/9780470571224.pse414
- Lapuk S.E., Ziganshin M.A., Larionov R.A., Mukhametzyanov T.A., Schick C., Gerasimov A.V. // J. Non-Cryst. Solids. 2023. Vol. 600. P. 122038. doi: 10.1016/j.jnoncrysol.2022.122038
- Minakov A., Morikawa J., Zhuravlev E., Ryu M., Van Herwaarden A. W., Schick C. // J. Appl. Phys. 2019. Vol. 125. P. 1. doi: 10.1063/1.5066384
- Vyazovkin S., Burnham A.K., Favergeon L., Koga N., Moukhina E., Pérez-Maqueda L.A., Sbirrazzuoli N. // Thermochim. Acta. 2020. Vol. 689. P. 178597. doi: 10.1016/j.tca.2020.178597
- Vyazovkin S., Burnham A.K., Criado J.M., Pérez-Maqueda L.A., Popescu C., Sbirrazzuoli N. // Thermochim. Acta. 2011. Vol. 520. P. 1. doi: 10.1016/j.tca.2011.03.034
- Vyazovkin S., Burnham A.K., Criado J.M., Pérez-Maqueda L.A., Popescu C., Sbirrazzuoli N. // Thermochim. Acta. 2014. Vol. 590. P. 1. doi: 10.1016/j.tca.2014.05.036
- Baghel S., Cathcart H., Redington W., O'Reilly N.J. // Eur. J. Pharm. Biopharm. 2016. Vol. 104. P. 59. doi: 10.1016/j.ejpb.2016.04.017
- Chattoraj S., Bhugra C., Li Z.J., Sun C.C. // J. Pharm. Sci. 2014. Vol. 103. P. 3950. doi: 10.1002/jps.24204
- Vyazovkin S. Isoconversional Kinetics of Thermally Stimulated Processes. New York: Springer Cham, 2015. P. 1. doi: 10.1007/978-3-319-14175-6_1
- Qiao J.C., Pelletier J.M. // Intermetallics. 2010. Vol. 19. P. 9. doi: 10.1016/j.intermet.2010.08.042
- Alvarez C., Correia N.T., Moura Ramos J.J., Fernandes A.C. // Polymer. 2000. Vol. 41. P. 2907. doi: 10.1016/S0032-3861(99)00445-0
- Moura Ramos J.J., Taveira-Marques R., Diogo H.P. // J. Pharm. Sci.2004. Vol. 93. P. 1503. doi: 10.1002/jps.20061
- Moynihan A.J. Easteal C.T., Wilder J., Tucker J. // J. Phys. Chem. 1974. Vol. 78. P. 2673. doi: 10.1021/j100619a008
- Svoboda R. // J. Therm. Anal. Calorim. 2014. Vol. 118. P. 1721. doi: 10.1007/s10973-014-4077-8
- Crowley K.J., Zografi G. // Thermochim. Acta. 2001. Vol. 380. P. 79. doi: 10.1016/S0040-6031(01)00662-1
- Baird J.A., Van Eerdenbrugh B., Taylor L.S. // J. Pharm. Sci. 2010. Vol. 99. P. 3787. doi: 10.1002/jps.22197
- Zhou D., Zhang G.G.Z., Law D., Grant D.J.W., Schmitt E.A. // J. Pharm. Sci. 2002. Vol. 91. P. 1863. doi: 10.1002/jps.10169
- Yu L. // Adv. Drug Deliv. Rev. 2001. Vol. 48. P. 27. doi: 10.1016/S0169-409X(01)00098-9
- Lapuk S.E., Zubaidullina L.S., Ziganshin M.A., Mukhametzyanov T.A., Schick C., Gerasimov A.V. // Int. J. Pharm. 2019. Vol. 562. P. 113. doi: 10.1016/j.ijpharm.2019.03.039
- Van Herwaarden S., Iervolino E., Van Herwaarden F., Wijffels T., Leenaers A., Mathot V. // Thermochim. Acta. 2011. Vol. 522. P. 46. doi: 10.1016/j.tca.2011.05.025
- Friedman H.L. // J. Polym. Sci. Part C Polym. Symp. 2007. Vol. 6. P. 183. doi: 10.1002/polc.5070060121
- Akahira T., Sunose T. // Res. Rep. Chiba Inst. Technol. 1971. Vol. 16. P. 22.
- Manić N., Janković B., Dodevski V. // J. Therm. Anal. Calorim. 2021. Vol. 143. P. 3419. doi: 10.1007/s10973-020-09675-y
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
