Контроль активности и селективности Pd-катализаторов гидрирования алкинов путем модификации структуры носителей различной природы гетероатомами N, S и P (обзор)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В обзоре рассмотрены актуальные достижения в области создания модифицированных гетероатомами N, S и P носителей для палладиевых катализаторов селективного гидрирования алкинов до олефинов. Описан механизм процесса, рассмотрены основные факторы, определяющие активность и селективность Pd-катализаторов, особое внимание уделено морфологическим характеристикам наночастиц и модификаторам активной фазы. Проведен сравнительный анализ активности и селективности Pd-катализаторов на основе ряда материалов (силикатных, углеродных, металл-органических каркасов и органических полимеров), модифицированных гетероатомами N, S и P либо в процессе синтеза (премодификация), либо путем функционализации уже готового материала (постмодификация), либо комбинацией двух стратегий. Рассмотрена связь строения носителя со свойствами наночастиц палладия, внедренных в его структуру, а также активностью, стабильностью и селективностью катализаторов. Внедрение гетероатомов N, P и S является эффективным инструментом, способствующим стабилизации частиц активной фазы. Использование модифицированных материалов в качестве носителей, как правило, снижает активность Pd-катализаторов на их основе, однако в то же время способствует значительному росту селективности по целевым олефинам. В случае силикатных и углеродных материалов наиболее оптимальными и используемыми являются подходы постмодификации, в то время как в случае металл-органических каркасов и органических полимеров — премодификации.

Full Text

Restricted Access

About the authors

Д. А. Макеева

Московский государственный университет им. М. В. Ломоносова

Author for correspondence.
Email: daria.makeeva@chemistry.msu.ru
ORCID iD: 0000-0001-7750-7457

химический факультет, к.х.н.

119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3

М. В. Ненашева

Московский государственный университет им. М. В. Ломоносова

Email: daria.makeeva@chemistry.msu.ru
ORCID iD: 0000-0002-0770-8277

химический факультет, к.х.н.

Russian Federation, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3

M. А. Баженова

Московский государственный университет им. М. В. Ломоносова

Email: daria.makeeva@chemistry.msu.ru
ORCID iD: 0000-0002-2157-0227

химический факультет

Russian Federation, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3

Л. А. Куликов

Московский государственный университет им. М. В. Ломоносова

Email: daria.makeeva@chemistry.msu.ru
ORCID iD: 0000-0002-7665-5404

химический факультет, к.х.н.

Russian Federation, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3

References

  1. Николаев С. А., Занавескин Л. Н., Смирновa В. В., Аверьянов В. А., Занавескин К. Л. Каталитическое гидрирование примесей алкинов и алкадиенов в олефинах. Практический и теоретический аспекты // Успехи химии. 2009. Т. 78. № 3. С. 248–265. https://doi.org/10.1070/RC2009v078n03ABEH003893
  2. McCue A. J., Anderson J. A. Recent advances in selective acetylene hydrogenation using palladium containing catalysts // Front. Chem. Sci. Eng. 2015. V. 9. N 2. P. 142–153. https://doi.org/10.1007/s11705-015-1516-4
  3. Yang Z., Han J., Fan Q., Jia H., Zhang F. Catalytic hydrogenation of a pyrolysis gasoline model feed over supported NiRu bimetallic catalysts with Ru content from 0.01 wt% to 0.1 wt% // Appl. Catal. A: General. 2018. V. 568. P. 183–190. https://doi.org/10.1016/j.apcata.2018.09.021
  4. Cheng Y. M., Chang J. R., Wu J. C. Kinetic study of pyrolysis gasoline hydrogenation over supported palladium catalyst // Appl. Catal. 1986. V. 24. N 1–2. P. 273–285. https://doi.org/10.1016/S0166-9834(00)81275-0
  5. Wilhite B. A., McCready M. J., Varma A. Kinetics of phenylacetylene hydrogenation over Pt/γ-Al2O3 catalyst // Ind. Eng. Chem. Res. 2002. V. 41. N 14. P. 3345–3350. https://doi.org/10.1021/ie0201112
  6. Golubina E. V., Lokteva E. S., Erokhin A. V., Veligzhanin A. A., Zubavichus Y. V., Likholobov V. A., Lunin V. V. The role of metal–support interaction in catalytic activity of nanodiamond-supported nickel in selective phenylacetylene hydrogenation // J. Catal. 2016. V. 344. P. 90–99. https://doi.org/10.1016/j.jcat.2016.08.017
  7. Zaitseva N. A., Molchanov V. V., Chesnokov V. V., Buyanov R. A., Zaikovskii V. I. Effect of the nature of coke-forming species on the crystallographic characteristics and catalytic properties of metal-filamentous carbon catalysts in the selective hydrogenation of 1,3-butadiene // Kinet. Catal. 2003. V. 44. N 1. P. 129–134. https://doi.org/10.1023/A:1022537121514
  8. Shi X., Lin Y., Huang L., Sun Z., Yang Y., Zhou X., Vovk E., Liu X., Huang X., Sun M., Wei S., Lu J. Copper catalysts in semihydrogenation of acetylene: From single atoms to nanoparticles // ACS Catal. 2020. V. 10. N 5. P. 3495–3504. https://doi.org/10.1021/acscatal.9b05321
  9. Chanerika R., Shozi M. L., Friedrich H. B. Synthesis and characterization of Ag/Al2O3 catalysts for the hydrogenation of 1-octyne and the preferential hydrogenation of 1-octyne vs 1-octene // ACS Omega. 2022. V. 7. N 5. P. 4026–4040. https://doi.org/10.1021/acsomega.1c05231
  10. Zhao X., Chang Y., Chen W. J., Wu Q., Pan X., Chen K., Weng B. Recent progress in Pd-based nanocatalysts for selective hydrogenation // ACS Omega. 2022. V. 7. N 1. P. 17–31. https://doi.org/10.1021/acsomega.1c06244
  11. Carturan G., Cocco G., Facchin G., Navazio G. Phenylacetylene hydrogenation with Pd, Pt and Pd-Pt alloy catalysts dispersed on amorphous supports: Effect of Pt/Pd ratio on catalytic activity and selectivity // J. Mol. Catal. 1984. V. 26. N 3. P. 375–384. https://doi.org/10.1016/0304-5102(84)85111-1
  12. Anderson J. A., Mellor J., Wells R. P. K. Pd catalysed hexyne hydrogenation modified by Bi and by Pb // J. Catal. 2009. V. 261. N 2. P. 208–216. https://doi.org/10.1016/J.JCAT.2008.11.023
  13. Zhang L., Zhou M., Wang A., Zhang T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms // Chem. Rev. 2020. V. 120. N 2. P. 683–733. https://doi.org/10.1021/acs.chemrev.9b00230
  14. Kruppe C. M., Krooswyk J. D., Trenary M. Selective hydrogenation of acetylene to ethylene in the presence of a carbonaceous surface layer on a Pd/Cu(III) single-atom alloy // ACS Catal. 2017. V. 7. N 12. P. 8042–8049. https://doi.org/10.1021/acscatal.7b02862
  15. Riyapan S., Zhang Y., Wongkaew A., Pongthawornsakun B., Monnier J. R., Panpranot J. Preparation of improved Ag-Pd/TiO2 catalysts using the combined strong electrostatic adsorption and electroless deposition methods for the selective hydrogenation of acetylene // Catal. Sci. Technol. 2016. V. 6. N 14. P. 5608–5617. https://doi.org/10.1039/c6cy00121a
  16. Yang L., Guo Y., Long J., Xia L., Li D., Xiao J., Liu H. PdZn alloy nanoparticles encapsulated within a few layers of graphene for efficient semi-hydrogenation of acetylene // Chem. Commun. 2019. V. 55. N 97. P. 14693–14696. https://doi.org/10.1039/c9cc06442g
  17. Insorn P., Kitiyanan B. Selective hydrogenation of mixed C4 containing high vinyl acetylene by Mn-Pd, Ni-Pd and Ag-Pd on Al2O3 catalysts // Catal. Today. 2015. V. 256. P. 223–230. https://doi.org/10.1016/j.cattod.2015.01.042
  18. Huang L., Subramanian R., Wang J., Kwon Oh J., Ye Z. Ligand screening for palladium nanocatalysts towards selective hydrogenation of alkynes // Mol. Catal. 2020. V. 488. P. 110923. https://doi.org/10.1016/j.mcat.2020.110923
  19. Boitiaux J. P., Cosyns J., Martino G. Additives effects in the selective hydrogenation of unsaturated hydrocarbons // Stud. Surf. Sci. Catal. 1982. V. 11. P. 355–368. https://doi.org/10.1016/S0167-2991(09)61408-7
  20. Crespo-Quesada M., Cárdenas-Lizana F., Dessimoz A.-L., Kiwi-Minsker L. Modern trends in catalyst and process design for alkyne hydrogenations // ACS Catal. 2012. V. 2. N 8. P. 1773–1786. https://doi.org/10.1021/cs300284r
  21. Su J., Chen J.-S. Synthetic porous materials applied in hydrogenation reactions // Micropor. Mesopor. Mater. 2017. V. 237. P. 246–259. https://doi.org/10.1016/j.micromeso.2016.09.039
  22. Makeeva D., Kulikov L., Zolotukhina A., Maximov A., Karakhanov E. Functionalization strategy influences the porosity of amino-containing porous aromatic frameworks and the hydrogenation activity of palladium catalysts synthesized on their basis // Mol. Catal. 2022. V. 517. P. 112012. https://doi.org/10.1016/j.mcat.2021.112012
  23. Molnár Á., Sárkány A., Varga M. Hydrogenation of carbon-carbon multiple bonds: Chemo-, regio- and stereo-selectivity // J. Mol. Catal. A: Chemical. 2001. V. 173. N 1–2. P. 185–221. https://doi.org/10.1016/S1381-1169(01)00150-9
  24. Mei D., Sheth P. A., Neurock M., Smith C. M. First-principles-based kinetic Monte Carlo simulation of the selective hydrogenation of acetylene over Pd(III) // J. Catal. 2006. V. 242. N 1. P. 1–15. https://doi.org/10.1016/J.JCAT.2006.05.009
  25. Guo X. C., Madix R. J. Selective hydrogenation and H-D exchange of unsaturated hydrocarbons on Pd(100)-P(1×1)-H(D) // J. Catal. 1995. V. 155. N 2. P. 336–344. https://doi.org/10.1006/JCAT.1995.1215
  26. Mastalir Á., Király Z., Berger F. Comparative study of size-quantized Pd-montmorillonite catalysts in liquid-phase semihydrogenations of alkynes // Appl. Catal. A: General. 2004. V. 269. N 1–2. P. 161–168. https://doi.org/10.1016/j.apcata.2004.04.012
  27. Ryndin Y. A., Nosova L. V., Boronin A. I., Chuvilin A. L. Effect of dispersion of supported palladium on its electronic and catalytic properties in the hydrogenation of vinylacetylene // Appl. Catal. 1988. V. 42. N 1. P. 131–141. https://doi.org/10.1016/S0166-9834(00)80081-0
  28. Semagina N., Renken A., Kiwi-Minsker L. Palladium nanoparticle size effect in 1-hexyne selective hydrogenation // J. Phys. Chem. C. 2007. V. 111. N 37. P. 13933–13937. https://doi.org/10.1021/JP073944K
  29. Stakheev A. Y., Markov P. V., Taranenko A. S., Bragina G. O., Baeva G. N., Tkachenko O. P., Mashkovskii I. S., Kashin A. S. Size effect of Pd nanoparticles in the selective liquid-phase hydrogenation of diphenylacetylene // Kinet. Catal. 2015. V. 56. N 6. P. 733–740. https://doi.org/10.1134/S0023158415060130
  30. Mao S., Wang Z., Luo Q., Lu B., Wang Y. Geometric and electronic effects in hydrogenation reactions // ACS Catal. 2023. V. 13. N 2. P. 974–1019. https://doi.org/10.1021/acscatal.2c05141
  31. Karakhanov E. A., Maximov A. L., Zolotukhina A. V. Selective semi-hydrogenation of phenyl acetylene by Pd nanocatalysts encapsulated into dendrimer networks // Mol. Catal. 2019. V. 469. P. 98–110. https://doi.org/10.1016/j.mcat.2019.03.005
  32. Telkar M. M., Rode C. V., Chaudhari R. V., Joshi S. S., Nalawade A. M. Shape-controlled preparation and catalytic activity of metal nanoparticles for hydrogenation of 2-butyne-1,4-diol and styrene oxide // Appl. Catal. A: General. 2004. V. 273. N 1–2. P. 11–19. https://doi.org/10.1016/J.APCATA.2004.05.056
  33. Semagina N., Kiwi-Minsker L. Palladium nanohexagons and nanospheres in selective alkyne hydrogenation // Catal. Lett. 2009. V. 127. N 3–4. P. 334–338. https://doi.org/10.1007/s10562-008-9684-1
  34. Yang B., Burch R., Hardacre C., Headdock G., Hu P. Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: A density functional theory study // J. Catal. 2013. V. 305. P. 264–276. https://doi.org/10.1016/j.jcat.2013.05.027
  35. Shamsiev R. S., Finkelshtein E. I. Adsorption of phenylacetylene and styrene on palladium surface: A DFT study // J. Mol. Model. 2018. V. 24. N 7. P. 143. https://doi.org/10.1007/s00894-018-3685-9
  36. Huang L., Hu K., Ye G., Ye Z. Highly selective semi-hydrogenation of alkynes with a Pd nanocatalyst modified with sulfide-based solid-phase ligands // Mol. Catal. 2021. V. 506. P. 111535. https://doi.org/10.1016/j.mcat.2021.111535
  37. Crespo-Quesada M., Dykeman R. R., Laurenczy G., Dyson P. J., Kiwi-Minsker L. Supported nitrogen-modified Pd nanoparticles for the selective hydrogenation of 1-hexyne // J. Catal. 2011. V. 279. N 1. P. 66–74. https://doi.org/10.1016/j.jcat.2011.01.003
  38. Klasovsky F., Claus P., Wolf D. Influence of preparation parameters on the performance of colloid-derived oxidic palladium catalysts for selective hydrogenation of C-C triple bonds // Top. Catal. 2009. V. 52. N 4. P. 412–423. https://doi.org/10.1007/s11244-008-9173-1
  39. Karousis N., Tsotsou G.-E., Evangelista F., Rudolf P., Ragoussis N., Tagmatarchis N. Carbon nanotubes decorated with palladium nanoparticles: Synthesis, characterization, and catalytic activity // J. Phys. Chem. C. 2008. V. 112. N 35. P. 13463–13469. https://doi.org/10.1021/jp802920k
  40. Schwab F., Weidler N., Lucas M., Claus P. Highly cis-selective and lead-free hydrogenation of 2-hexyne by a supported Pd catalyst with an ionic-liquid layer // Chem. Commun. 2014. V. 50. N 72. P. 10406–10408. https://doi.org/10.1039/C4CC04183F
  41. Li R., Yue Y., Chen Z., Chen X., Wang S., Jiang Z., Wang B., Xu Q., Han D., Zhao J. Selective hydrogenation of acetylene over Pd-Sn catalyst: Identification of Pd2Sn intermetallic alloy and crystal plane-dependent performance // Appl. Catal. B: Environmental. 2020. V. 279. P. 119348. https://doi.org/10.1016/j.apcatb.2020.119348
  42. Chung Y. M., Rhee H. K. Pt-Pd bimetallic nanoparticles encapsulated in dendrimer nanoreactor // Catal. Lett. 2003. V. 85. N 3–4. P. 159–164. https://doi.org/10.1023/A:1022181327349
  43. Liu J., Uhlman M. B., Montemore M. M., Trimpalis A., Giannakakis G., Shan J., Cao S., Hannagan R. T., Sykes E. C. H., Flytzani-Stephanopoulos M. Integrated catalysis-surface science-theory approach to understand selectivity in the hydrogenation of 1-hexyne to 1-hexene on PdAu single-atom alloy catalysts // ACS Catal. 2019. V. 9. N 9. P. 8757–8765. https://doi.org/10.1021/acscatal.9b00491
  44. Lindlar H. Ein neuer katalysator für selektive hydrierungen // Helv. Chim. Acta. 1952. V. 35. N 2. P. 446–450. https://doi.org/10.1002/hlca.19520350205
  45. García-Mota M., Gómez-Díaz J., Novell-Leruth G., Vargas-Fuentes C., Bellarosa L., Bridier B., Pérez-Ramírez J., López N. A density functional theory study of the «mythic» Lindlar hydrogenation catalyst // Theor. Chem. Acc. 2011. V. 128. N 4. P. 663–673. https://doi.org/10.1007/s00214-010-0800-0
  46. Stakheev A. Y., Kustov L. Effects of the support on the morphology and electronic properties of supported metal clusters: Modern concepts and progress in 1990s // Appl. Catal. A: General. 1999. V. 188. N 1–2. P. 3–35. https://doi.org/10.1016/S0926-860X(99)00232-X
  47. Verde-Sesto E., Pintado-Sierra M., Corma A., Maya E. M., de la Campa J. G., Iglesias M., Sánchez F. First pre-functionalised polymeric aromatic framework from mononitrotetrakis(iodophenyl)methane and its applications // Chem. — A Eur. J. 2014. V. 20. N 17. P. 5111–5120. https://doi.org/10.1002/chem.201304163
  48. Barin G., Peterson G. W., Crocellà V., Xu J., Colwell K. A., Nandy A., Reimer J. A., Bordiga S., Long J. R. Highly effective ammonia removal in a series of Brønsted acidic porous polymers: Investigation of chemical and structural variations // Chem. Sci. 2017. V. 8. N 6. P. 4399–4409. https://doi.org/10.1039/c6sc05079d
  49. Xu H.-S., Ding S.-Y., An W.-K., Wu H., Wang W. Constructing crystalline covalent organic frameworks from chiral building blocks // J. Am. Chem. Soc. 2016. V. 138. N 36. P. 11489–11492. https://doi.org/10.1021/jacs.6b07516
  50. Zhang Y., Riduan S. N. Functional porous organic polymers for heterogeneous catalysis // Chem. Soc. Rev. 2012. V. 41. N 6. P. 2083–2094. https://doi.org/10.1039/c1cs15227k
  51. Kim J. H., Kang D. W., Yun H., Kang M., Singh N., Kim J. S., Hong C. S. Post-synthetic modifications in porous organic polymers for biomedical and related applications // Chem. Soc. Rev. 2022. V. 51. N 1. P. 43–56. https://doi.org/10.1039/d1cs00804h
  52. Segura J. L., Royuela S., Mar Ramos M. Post-synthetic modification of covalent organic frameworks // Chem. Soc. Rev. 2019. V. 48. N 14. P. 3903–3945. https://doi.org/10.1039/c8cs00978c
  53. Kalaj M., Cohen S. M. Postsynthetic modification: An enabling technology for the advancement of metal–organic frameworks // ACS Cent. Sci. 2020. V. 6. N 7. P. 1046–1057. https://doi.org/10.1021/acscentsci.0c00690
  54. Yusran Y., Guan X., Li H., Fang Q., Qiu S. Postsynthetic functionalization of covalent organic frameworks // Natl. Sci. Rev. 2020. V. 7. N 1. P. 170–190. https://doi.org/10.1093/nsr/nwz122
  55. Макеева Д. А., Куликов Л. А., Оськина Е. Д., Уваров О. В., Максимов А. Л., Караханов Э. А. Палладиевые катализаторы на основе азотсодержащих пористых ароматических каркасов для гидрирования непредельных соединений // Нефтехимия. 2022. Т. 62. № 6. С. 907–920. https://doi.org/10.31857/S0028242122060132
  56. Николаев С. А., Кротова И. Н. Парциальное гидрирование фенилацетилена на золото- и палладийсодержащих катализаторах // Нефтехимия. 2013. Т. 53. № 6. С. 442–448. https://doi.org/10.7868/S0028242113050079
  57. Weerachawanasak P., Mekasuwandumrong O., Arai M., Fujita S. I., Praserthdam P., Panpranot J. Effect of strong metal-support interaction on the catalytic performance of Pd/TiO2 in the liquid-phase semihydrogenation of phenylacetylene // J. Catal. 2009. V. 262. N 2. P. 199–205. https://doi.org/10.1016/j.jcat.2008.12.011
  58. Jackson S. D., Hamilton C. A., Kelly G. J., De Bruin D. The hydrogenation of C-5 alkynes over palladium catalysts // React. Kinet. Catal. Lett. 2001. V. 73. N 1. P. 77–82. https://doi.org/10.1023/A:1013924921651
  59. Jackson S. D., Casey N. J. Hydrogenation of propyne over palladium catalysts // J. Chem. Soc. Faraday Trans. 1995. V. 91. N 18. P. 3269–3274. https://doi.org/10.1039/ft9959103269
  60. Duca D., Frusteri F., Parmaliana A., Deganello G. Selective hydrogenation of acetylene in ethylene feedstocks on Pd catalysts // Appl. Catal. A: General. 1996. V. 146. N 2. P. 269–284. https://doi.org/10.1016/S0926-860X(96)00145-7
  61. Panpranot J., Phandinthong K., Sirikajorn T., Arai M., Praserthdam P. Impact of palladium silicide formation on the catalytic properties of Pd/SiO2 catalysts in liquid-phase semihydrogenation of phenylacetylene // J. Mol. Catal. A: Chemical. 2007. V. 261. N 1. P. 29–35. https://doi.org/10.1016/j.molcata.2006.07.053
  62. Mastalir Á., Király Z., Szöllosi G., Bartók M. Preparation of organophilic Pd-montmorillonite, an efficient catalyst in alkyne semihydrogenation // J. Catal. 2000. V. 194. N 1. P. 146–152. https://doi.org/10.1006/JCAT.2000.2929
  63. Melnikov D., Reshetina M., Novikov A., Cherednichenko K., Stavitskaya A., Stytsenko V., Vinokurov V., Huang W., Glotov A. Strategies for palladium nanoparticles formation on halloysite nanotubes and their performance in acetylene semi-hydrogenation // Appl. Clay Sci. 2023. V. 232. P. 106763. https://doi.org/10.1016/J.CLAY.2022.106763
  64. Marín-Astorga N., Pecchi G., Pinnavaia T. J., Alvez-Manoli G., Reyes P. Mesostructured silicas as supports for palladium-catalyzed hydrogenation of phenyl acetylene and 1-phenyl-1-hexyne to alkenes // J. Mol. Catal. A: Chemical. 2006. V. 247. N 1–2. P. 145–152. https://doi.org/10.1016/j.molcata.2005.11.031
  65. Alvez-Manoli G., Pinnavaia T. J., Zhang Z., Lee D. K., Marín-Astorga K., Rodriguez P., Imbert F., Reyes P., Marín-Astorga N. Stereo-selective hydrogenation of 3-hexyne over low-loaded palladium catalysts supported on mesostructured materials // Appl. Catal. A: General. 2010. V. 387. N 1–2. P. 26–34. https://doi.org/10.1016/J.APCATA.2010.07.062
  66. Long W., Brunelli N. A., Didas S. A., Ping E. W., Jones C. W. Aminopolymer-silica composite-supported Pd catalysts for selective hydrogenation of alkynes // ACS Catal. 2013. V. 3. N 8. P. 1700–1708. https://doi.org/10.1021/cs3007395
  67. Sajiki H., Mori S., Ohkubo T., Ikawa T., Kume A., Maegawa T., Monguchi Y. Partial hydrogenation of alkynes tocis-olefins by using a novel Pd0-polyethyleneimine catalyst // Chem. — A Eur. J. 2008. V. 14. N 17. P. 5109–5111. https://doi.org/10.1002/chem.200800535
  68. Mori S., Ohkubo T., Ikawa T., Kume A., Maegawa T., Monguchi Y., Sajiki H. Pd(0)-polyethyleneimine complex as a partial hydrogenation catalyst of alkynes to alkenes // J. Mol. Catal. A: Chemical. 2009. V. 307. N 1–2. P. 77–87. https://doi.org/10.1016/j.molcata.2009.03.013
  69. Latypova A. R., Lebedev M. D., Rumyantsev E. V., Filippov D. V., Lefedova O. V., Bykov A. V., Doluda V. Y. Amino-modified silica as effective support of the palladium catalyst for 4-nitroaniline hydrogenation // Catalysts. 2020. V. 10. N 4. P. 22–25. https://doi.org/10.3390/catal10040375
  70. Rossi L. M., Nangoi I. M., Costa N. J. S. Ligand-assisted preparation of palladium supported nanoparticles: A step toward size control // Inorg. Chem. 2009. V. 48. N 11. P. 4640–4642. https://doi.org/10.1021/ic900440p
  71. Da Silva F. P., Fiorio J. L., Rossi L. M. Tuning the catalytic activity and selectivity of Pd nanoparticles using ligand-modified supports and surfaces // ACS Omega. 2017. V. 2. N 9. P. 6014–6022. https://doi.org/10.1021/acsomega.7b00836
  72. Karakhanov E., Maximov A., Kardasheva Y., Semernina V., Zolotukhina A., Ivanov A., Abbott G., Rosenberg E., Vinokurov V. Pd nanoparticles in dendrimers immobilized on silica-polyamine composites as catalysts for selective hydrogenation // ACS Appl. Mater. Interfaces. 2014. V. 6. N 11. P. 8807–8816. https://doi.org/10.1021/am501528a
  73. Dhiman M., Chalke B., Polshettiwar V. Efficient synthesis of monodisperse metal (Rh, Ru, Pd) nanoparticles supported on fibrous nanosilica (KCC-1) for catalysis // ACS Sustain. Chem. Eng. 2015. V. 3. N 12. P. 3224–3230. https://doi.org/10.1021/acssuschemeng.5b00812
  74. Huo J., Johnson R. L., Duan P., Pham H. N., Mendivelso-Perez D., Smith E. A., Datye A. K., Schmidt-Rohr K., Shanks B. H. Stability of Pd nanoparticles on carbon-coated supports under hydrothermal conditions // Catal. Sci. Technol. 2018. V. 8. N 4. P. 1151–1160. https://doi.org/10.1039/C7CY02098H
  75. Oliveira R. L., Kerstien J., Schomäcker R., Thomas A. Pd nanoparticles confined in mesoporous N-doped carbon silica supports: A synergistic effect between catalyst and support // Catal. Sci. Technol. 2020. V. 10. N 5. P. 1385–1394. https://doi.org/10.1039/c9cy01920k
  76. Li Z., Ren Q., Wang X., Chen W., Leng L., Zhang M., Horton J. H., Liu B., Xu Q., Wu W., Wang J. Highly active and stable palladium single-atom catalyst achieved by a thermal atomization strategy on an SBA-15 molecular sieve for semi-hydrogenation reactions // ACS Appl. Mater. Interfaces. 2021. V. 13. N 2. P. 2530–2537. https://doi.org/10.1021/acsami.0c17570
  77. Kuwahara Y., Kango H., Yamashita H. Pd nanoparticles and aminopolymers confined in hollow silica spheres as efficient and reusable heterogeneous catalysts for semihydrogenation of alkynes // ACS Catal. 2019. V. 9. N 3. P. 1993–2006. https://doi.org/10.1021/acscatal.8b04653
  78. Hu R., Wang L., Xu S., Lu Y., Zhou S. Silica nanospheres-encapsulated polymer ligands-bound Pd nanoparticles as highly efficient and selective catalysts for semi-hydrogenations of alkynes // Micropor. Mesopor. Mater. 2024. V. 377. June. P. 113213. https://doi.org/10.1016/j.micromeso.2024.113213
  79. Karakhanov E., Maximov A., Zolotukhina A., Mamadli A., Vutolkina A., Ivanov A. Dendrimer-stabilized Ru nanoparticles immobilized in organo-silica materials for hydrogenation of phenols // Catalysts. 2017. V. 7. N 3. P. 86. https://doi.org/10.3390/catal7030086
  80. Karakanov E. A., Zolotukhina A. V., Ivanov A. O., Maximov A. L. Dendrimer-encapsulated Pd nanoparticles, immobilized in silica pores, as catalysts for selective hydrogenation of unsaturated compounds // ChemistryOpen. 2019. V. 8. N 3. P. 358–381. https://doi.org/10.1002/open.201800280
  81. Karakhanov E. A., Maximov A. L., Zakharyan E. M., Zolotukhina A. V., Ivanov A. O. Palladium nanoparticles on dendrimer-containing supports as catalysts for hydrogenation of unsaturated hydrocarbons // Mol. Catal. 2017. V. 440. N 5. P. 107–119. https://doi.org/10.1016/j.mcat.2017.07.011
  82. Boitiaux J. P., Cosyns J., Vasudevan S. Hydrogenation of highly unsaturated hydrocarbons over highly dispersed Pd catalyst // Appl. Catal. 1985. V. 15. N 2. P. 317–326. https://doi.org/10.1016/S0166-9834(00)81845-X
  83. Zhu J., Holmen A., Chen D. Carbon nanomaterials in catalysis: Proton affinity, chemical and electronic properties, and their catalytic consequences // ChemCatChem. 2013. V. 5. N 2. P. 378–401. https://doi.org/10.1002/cctc.201200471
  84. Sharma P., Krishnapriya R., Sharma P. R., Sharma R. K. Recent advances in synthesis of metal-carbon nanocomposites and their application in catalytic hydrogenation reactions // ACS Symp. Ser. 2020. V. 1359. P. 403–458. https://doi.org/10.1021/bk-2020-1359.ch014
  85. Georgakilas V., Tiwari J. N., Kemp K. C., Perman J. A., Bourlinos A. B., Kim K. S., Zboril R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications // Chem. Rev. 2016. V. 116. N 9. P. 5464–5519. https://doi.org/10.1021/acs.chemrev.5b00620
  86. Yu R., Liu Q., Tan K. L., Xu G. Q., Ng S. C., Chan H. S. O., Hor T. S. A. Preparation, characterisation and catalytic hydrogenation properties of palladium supported on C60 // J. Chem. Soc. — Faraday Trans. 1997. V. 93. N 12. P. 2207–2210. https://doi.org/10.1039/a700804j
  87. Wang A., Li J., Zhang T. Heterogeneous single-atom catalysis // Nat. Rev. Chem. 2018. V. 2. N 6. P. 65–81. https://doi.org/10.1038/s41570-018-0010-1
  88. Burueva D. B., Sviyazov S. V., Huang F., Prosvirin I. P., Bukhtiyarov A. V., Bukhtiyarov V. I., Liu H., Koptyug I. V. Pd on nanodiamond/graphene in hydrogenation of propyne with parahydrogen // J. Phys. Chem. C. 2021. V. 125. N 49. P. 27221–27229. https://doi.org/10.1021/acs.jpcc.1c08424
  89. Huang F., Jia Z., Diao J., Yuan H., Su D., Liu H. Palladium nanoclusters immobilized on defective nanodiamond-graphene core-shell supports for semihydrogenation of phenylacetylene // J. Energy Chem. 2019. V. 33. P. 31–36. https://doi.org/10.1016/j.jechem.2018.08.006
  90. Guldi D.M., Martín N. Carbon nanotubes and related structures: Synthesis, characterization, functionalization, and applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. P. 135–198. https://doi.org/10.1002/9783527629930
  91. Dobrovolná Z., Kačer P., Červený L. Competitive hydrogenation in alkene–alkyne–diene systems with palladium and platinum catalysts // J. Mol. Catal. A: Chemical. 1998. V. 130. N 3. P. 279–284. https://doi.org/10.1016/S1381-1169(97)00219-7
  92. Chan C. W. A., Xie Y., Cailuo N., Yu K. M. K., Cookson J., Bishop P., Tsang S. C. New environmentally friendly catalysts containing Pd-interstitial carbon made from Pd-glucose precursors for ultraselective hydrogenations in the liquid phase // Chem. Commun. 2011. V. 47. N 28. P. 7971–7973. https://doi.org/10.1039/c1cc12681d
  93. Iijima S. Helical microtubules of graphitic carbon // Nature. 1991. V. 354. N 6348. P. 56–58. https://doi.org/10.1038/354056a0
  94. Rodriguez N. M., Kim M. S., Baker R. T. K. Carbon nanofibers: A unique catalyst support medium // J. Phys. Chem. 1994. V. 98. N 50. P. 13108–13111. https://doi.org/10.1021/j100101a003
  95. Domínguez-Domínguez S., Berenguer-Murcia Á., Pradhan B. K., Linares-Solano Á., Cazorla-Amorós D. Semihydrogenation of phenylacetylene catalyzed by palladium nanoparticles supported on carbon materials // J. Phys. Chem. C. 2008. V. 112. N 10. P. 3827–3834. https://doi.org/10.1021/jp710693u
  96. Jung A., Jess A., Schubert T., Schütz W. Performance of carbon nanomaterial (nanotubes and nanofibres) supported platinum and palladium catalysts for the hydrogenation of cinnamaldehyde and of 1-octyne // Appl. Catal. A: General. 2009. V. 362. N 1–2. P. 95–105. https://doi.org/10.1016/j.apcata.2009.04.026
  97. Yan H., Cheng H., Yi H., Lin Y., Yao T., Wang C., Li J., Wei S., Lu J. Single-atom Pd 1 /graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene // J. Am. Chem. Soc. 2015. V. 137. N 33. P. 10484–10487. https://doi.org/10.1021/jacs.5b06485
  98. Yan H., Lv H., Yi H., Liu W., Xia Y., Huang X., Huang W., Wei S., Wu X., Lu J. Understanding the underlying mechanism of improved selectivity in pd1 single-atom catalyzed hydrogenation reaction // J. Catal. 2018. V. 366. P. 70–79. https://doi.org/10.1016/j.jcat.2018.07.033
  99. Li F., Zhang G., Song Y. Fabrication and evaluation of multi-walled carbon nanotubes supported novel catalyst for select conversion of cellulose to 5-hydroxymethylfurfural // Energy Technol. 2018. V. 6. N 9. P. 1633–1641. https://doi.org/10.1002/ente.201700800
  100. Wan Y., Yang H., Zhao D. «Host-guest» chemistry in the synthesis of ordered nonsiliceous mesoporous materials // Acc. Chem. Res. 2006. V. 39. N 7. P. 423–432. https://doi.org/10.1021/ar050091a
  101. Xing R., Liu N., Liu Y., Wu H., Jiang Y., Chen L., He M., Wu P. Novel solid acid catalysts: Sulfonic acid group-functionalized mesostructured polymers // Adv. Funct. Mater. 2007. V. 17. N 14. P. 2455–2461. https://doi.org/10.1002/adfm.200600784
  102. Xing R., Liu Y., Wu H., Li X., He M., Wu P. Preparation of active and robust palladium nanoparticle catalysts stabilized by diamine-functionalized mesoporous polymers // Chem. Commun. 2008. V. 47. P. 6297–6299. https://doi.org/10.1039/b815186e
  103. Muylaert I., Verberckmoes A., Spileers J., Demuynck A., Peng L., De Clippel F., Sels B., Van Der Voort P. Synthesis of sulphonated mesoporous phenolic resins and their application in esterification and asymmetric aldol reactions // Mater. Chem. Phys. 2013. V. 138. N 1. P. 131–139. https://doi.org/10.1016/j.matchemphys.2012.11.032
  104. Yao C., Li H., Wu H., Liu Y., Wu P. Mesostructured polymer-supported diphenylphosphine–palladium complex: An efficient and recyclable catalyst for Heck reactions // Catal. Commun. 2009. V. 10. N 7. P. 1099–1102. https://doi.org/10.1016/J.CATCOM.2009.01.005
  105. Бороноев М. П., Субботина Е. С., Курмаева А. А., Кардашева Ю. С., Максимов А. Л., Караханов Э. А. Наночастицы платины и палладия в модифицированных мезопористых фенолформальдегидных полимерах как катализаторы гидрирования // Нефтехимия. 2016. Т. 56. № 2. С. 128–139. https://doi.org/10.7868/S0028242116020052
  106. Ding J., Tang Q., Fu Y., Zhang Y., Hu J., Li T., Zhong Q., Fan M., Kung H. H. Core-shell covalently linked graphitic carbon nitride-melamine-resorcinol-formaldehyde microsphere polymers for efficient photocatalytic CO2 reduction to methanol // J. Am. Chem. Soc. 2022. V. 144. N 22. P. 9576–9585. https://doi.org/10.1021/jacs.1c13301
  107. Deng D., Yang Y., Gong Y., Li Y., Xu X., Wang Y. Palladium nanoparticles supported on mpg-C3N4 as active catalyst for semihydrogenation of phenylacetylene under mild conditions // Green Chem. 2013. V. 15. N 9. P. 2525–2531. https://doi.org/10.1039/c3gc40779a
  108. Advani J. H., Khan N. H., Bajaj H. C., Biradar A. V. Stabilization of palladium nanoparticles on chitosan derived N-doped carbon for hydrogenation of various functional groups // Appl. Surf. Sci. 2019. V. 487. P. 1307–1315. https://doi.org/10.1016/j.apsusc.2019.05.057
  109. Liu J., Lin S., Sun J., Ma L. In-situ facile synthesis novel N-doped thin graphene layer encapsulated Pd@N/C catalyst for semi-hydrogenation of alkynes // J. Catal. 2022. V. 405. P. 553–560. https://doi.org/10.1016/j.jcat.2021.11.012
  110. Ge Q., Yu H., Zhang L., Ni S., Wu W., Yang H., Liu J., Huang K. Honeycomb-like nitrogen-doped porous carbon nanosphere encapsulated ultrafine Pd nanoparticles for selectively catalyzing hydrogenation of cinnamaldehyde in water // Micropor. Mesopor. Mater. 2022. V. 336. P. 111865. https://doi.org/10.1016/j.micromeso.2022.111865
  111. Contreras R. C., Guicheret B., Machado B. F., Rivera-Cárcamo C., Curiel Alvarez M. A., Valdez Salas B., Ruttert M., Placke T., Favre Réguillon A., Vanoye L., de Bellefon C., Philippe R., Serp P. Effect of mesoporous carbon support nature and pretreatments on palladium loading, dispersion and apparent catalytic activity in hydrogenation of myrcene // J. Catal. 2019. V. 372. P. 226–244. https://doi.org/10.1016/j.jcat.2019.02.034
  112. Zhang W., Wang F., Li X., Liu Y., Liu Y., Ma J. Fabrication of hollow carbon nanospheres introduced with Fe and N species immobilized palladium nanoparticles as catalysts for the semihydrogenation of phenylacetylene under mild reaction conditions // Appl. Surf. Sci. 2017. V. 404. P. 398–408. https://doi.org/10.1016/j.apsusc.2017.01.298
  113. Li X., Pan Y., Yi H., Hu J., Yang D., Lv F., Li W., Zhou J., Wu X., Lei A., Zhang L. Mott-Schottky effect leads to alkyne semihydrogenation over Pd-Nanocube@N-Doped carbon // ACS Catal. 2019. V. 9. N 5. P. 4632–4641. https://doi.org/10.1021/acscatal.9b01001
  114. Li S., Yue G., Li H., Liu J., Hou L., Wang N., Cao C., Cui Z., Zhao Y. Pd single atom stabilized on multiscale porous hollow carbon fibers for phenylacetylene semi-hydrogenation reaction // Chem. Eng. J. 2023. V. 454. P. 140031. https://doi.org/10.1016/j.cej.2022.140031
  115. Chaikittisilp W., Ariga K., Yamauchi Y. A new family of carbon materials: Synthesis of MOF-derived nanoporous carbons and their promising applications // J. Mater. Chem. A. 2013. V. 1. N 1. P. 14–19. https://doi.org/10.1039/c2ta00278g
  116. Shi J., Dou K., Xie D., Zhang F. Semi-hydrogenation of acetylenic alcohol to olefinic alcohol catalyzed by Pd nanoparticles embedded in nitrogen-enriched porous carbon derived from ZIF-8 // Appl. Catal. O: Open. 2024. V. 191. January. P. 206917. https://doi.org/10.1016/j.apcato.2024.206917
  117. Li X., Zhang W., Liu Y., Li R. Palladium nanoparticles immobilized on magnetic porous carbon derived from ZIF-67 as efficient catalysts for the semihydrogenation of phenylacetylene under extremely mild conditions // ChemCatChem. 2016. V. 8. N 6. P. 1111–1118. https://doi.org/10.1002/cctc.201501283
  118. Luo Q., Wang Z., Chen Y., Mao S., Wu K., Zhang K., Li Q., Lv G., Huang G., Li H., Wang Y. Dynamic modification of palladium catalysts with chain alkylamines for the selective hydrogenation of alkynes // ACS Appl. Mater. Interfaces. 2021. V. 13. N 27. P. 31775–31784. https://doi.org/10.1021/acsami.1c09682
  119. Bavykina A., Kolobov N., Khan I. S., Bau J. A., Ramirez A., Gascon J. Metal-organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives // Chem. Rev. 2020. V. 120. N 16. P. 8468–8535. https://doi.org/10.1021/acs.chemrev.9b00685
  120. Konnerth H., Prechtl M. H. G. Selective partial hydrogenation of alkynes to (Z)-alkenes with ionic liquid-doped nickel nanocatalysts at near ambient conditions // Chem. Commun. 2016. V. 52. N 58. P. 9129–9132. https://doi.org/10.1039/C6CC00499G
  121. Furukawa H., Ko N., Go Y. B., Aratani N., Choi S. B., Choi E., Yazaydin A. Ö., Snurr R. Q., OʹKeeffe M., Kim J., Yaghi O. M. Ultrahigh porosity in metal-organic frameworks // Science. 2010. V. 329. N 5990. P. 424–428. https://doi.org/10.1126/science.1192160
  122. Yin D., Li C., Ren H., Shekhah O., Liu J., Liang C. Efficient Pd@MIL-101(Cr) hetero-catalysts for 2-butyne-1,4-diol hydrogenation exhibiting high selectivity // RSC Adv. 2017. V. 7. N 3. P. 1626–1633. https://doi.org/10.1039/c6ra25722d
  123. Wu H. Q., Huang L., Li J. Q., Zheng A. M., Tao Y., Yang L. X., Yin W. H., Luo F. Pd@Zn-MOF-74: Restricting a guest molecule by the open-metal site in a metal-organic framework for selective semihydrogenation // Inorg. Chem. 2018. V. 57. N 20. P. 12444–12447. https://doi.org/10.1021/acs.inorgchem.8b01652
  124. Isaeva V. I., Tkachenko O. P., Afonina E. V., Kozlova L. M., Kapustin G. I., Grünert W., Solovʹeva S. E., Antipin I. S., Kustov L. M. 2-Butyne-1,4-diol hydrogenation over palladium supported on Zn2+-based — MOF and host-guest MOF/calix[4]arene materials // Micropor. Mesopor. Mater. 2013. V. 166. P. 167–175. https://doi.org/10.1016/j.micromeso.2012.04.030
  125. Baimuratova R. K., Andreeva A. V., Uflyand I. E., Shilov G. V., Bukharbayeva F. U., Zharmagambetova A. K., Dzhardimalieva G. I. Synthesis and catalytic activity in the hydrogenation reaction of palladium-doped metal-organic frameworks based on oxo-centered zirconium complexes // J. Compos. Sci. 2022. V. 6. N 10. P. 299. https://doi.org/10.3390/jcs6100299
  126. Choe K., Zheng F., Wang H., Yuan Y., Zhao W., Xue G., Qiu X., Ri M., Shi X., Wang Y., Li G., Tang Z. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks // Angew. Chemie. 2020. V. 132. N 9. P. 3679–3686. https://doi.org/10.1002/ange.201913453
  127. Bakuru V. R., Velaga B., Peela N. R., Kalidindi S. B. Hybridization of Pd nanoparticles with UiO-66(Hf) metal-organic framework and the wffect of nanostructure on the catalytic properties // Chem. — A Eur. J. 2018. V. 24. N 60. P. 15978–15982. https://doi.org/10.1002/CHEM.201803200
  128. Li Z., Hu M., Liu J., Wang W., Li Y., Fan W., Gong Y., Yao J., Wang P., He M., Li Y. Mesoporous silica stabilized MOF nanoreactor for highly selective semi-hydrogenation of phenylacetylene via synergistic effect of Pd and Ru single site // Nano Res. 2022. V. 15. N 3. P. 1983–1992. https://doi.org/10.1007/s12274-021-3849-2
  129. Li L., Yang W., Yang Q., Guan Q., Lu J., Yu S. H., Jiang H. L. Accelerating chemo- and regioselective hydrogenation of alkynes over bimetallic nanoparticles in a metal-organic framework // ACS Catal. 2020. V. 10. N 14. P. 7753–7762. https://doi.org/10.1021/acscatal.0c00177
  130. Peng L., Zhang J., Yang S., Han B., Sang X., Liu C., Yang G. The ionic liquid microphase enhances the catalytic activity of Pd nanoparticles supported by a metal-organic framework // Green Chem. 2015. V. 17. N 8. P. 4178–4182. https://doi.org/10.1039/c5gc01333j
  131. Kandiah M., Nilsen M. H., Usseglio S., Jakobsen S., Olsbye U., Tilset M., Larabi C., Quadrelli E. A., Bonino F., Lillerud K. P. Synthesis and stability of tagged UiO-66 Zr-MOFs // Chem. Mater. 2010. V. 22. N 24. P. 6632–6640. https://doi.org/10.1021/cm102601v
  132. Das S., Heasman P., Ben T., Qiu S. Porous organic materials: Strategic design and structure-function correlation // Chem. Rev. 2017. V. 117. N 3. P. 1515–1563. https://doi.org/10.1021/acs.chemrev.6b00439
  133. Giri A., Patra A. Porous organic polymers: Promising testbed for heterogeneous reactive oxygen species mediated photocatalysis and nonredox CO2 fixation // Chem. Rec. 2022. V. 22. N 9. P. e202200071. https://doi.org/10.1002/tcr.202200071
  134. Sarkar C., Shit S. C., Das N., Mondal J. Presenting porous-organic-polymers as next-generation invigorating materials for nanoreactors // Chem. Commun. 2021. V. 57. N 69. P. 8550–8567. https://doi.org/10.1039/d1cc02616j
  135. Huang J., Turner S. R. Hypercrosslinked polymers: A review // Polym. Rev. 2018. V. 58. N 1. P. 1–41. https://doi.org/10.1080/15583724.2017.1344703
  136. Tan L., Tan B. Hypercrosslinked porous polymer materials: Design, synthesis, and applications // Chem. Soc. Rev. 2017. V. 46. N 11. P. 3322–3356. https://doi.org/10.1039/c6cs00851h
  137. Sulman E. M., Nikoshvili L. Z., Matveeva V. G., Tyamina I. Y., Sidorov A. I., Bykov A. V., Demidenko G. N., Stein B. D., Bronstein L. M. Palladium containing catalysts based on hypercrosslinked polystyrene for selective hydrogenation of acetylene alcohols // Top. Catal. 2012. V. 55. N 7–10. P. 492–497. https://doi.org/10.1007/s11244-012-9810-6
  138. Nikoshvili L., Shimanskaya E., Bykov A., Yuranov I., Kiwi-Minsker L., Sulman E. Selective hydrogenation of 2-methyl-3-butyn-2-ol over Pd-nanoparticles stabilized in hypercrosslinked polystyrene: Solvent effect // Catal. Today. 2015. V. 241. P. 179–188. https://doi.org/10.1016/j.cattod.2014.01.045
  139. Nikoshvili L. Z., Popov A. Y., Bykov A. V., Sidorov A. I., Kiwi-Minsker L. Hybrid Pd-nanoparticles within polymeric network in selective hydrogenation of alkynols: Influence of support porosity // Molecules. 2022. V. 27. N 12. P. 3842. https://doi.org/10.3390/molecules27123842
  140. Nikoshvili L. Z., Makarova A. S., Lyubimova N. A., Bykov A. V., Sidorov A. I., Tyamina I. Y., Matveeva V. G., Sulman E. M. Kinetic study of selective hydrogenation of 2-methyl-3-butyn-2-ol over Pd-containing hypercrosslinked polystyrene // Catal. Today. 2015. V. 256. P. 231–240. https://doi.org/10.1016/j.cattod.2015.02.033
  141. Nemygina N. A., Nikoshvili L. Z., Matveeva V. G., Sulman M. G., Sulman E. M., Kiwi-Minsker L. Pd-Nanoparticles confined within hollow polymeric framework as effective catalysts for the synthesis of fine chemicals // Top. Catal. 2016. V. 59. N 13–14. P. 1185–1195. https://doi.org/10.1007/s11244-016-0639-2
  142. Nikoshvili L. Z., Bykov A. V., Khudyakova T. E., Lagrange T., Héroguel F., Luterbacher J. S., Matveeva V. G., Sulman E. M., Dyson P. J., Kiwi-Minsker L. Promotion effect of alkali metal hydroxides on polymer-stabilized Pd nanoparticles for selective hydrogenation of C-C triple bonds in alkynols // Ind. Eng. Chem. Res. 2017. V. 56. N 45. P. 13219–13227. https://doi.org/10.1021/acs.iecr.7b01612
  143. Bakhvalova E. S., Pinyukova A. O., Mikheev A. V., Demidenko G. N., Sulman M. G., Bykov A. V., Nikoshvili L. Z., Kiwi-Minsker L. Noble metal nanoparticles stabilized by hyper-cross-linked polystyrene as effective catalysts in hydrogenation of arenes // Molecules. 2021. V. 26. N 15. P. 4687. https://doi.org/10.3390/molecules26154687
  144. Bhanja P., Liu X., Modak A. Pt and Pd nanoparticles immobilized on amine-functionalized hypercrosslinked porous polymer nanotubes as selective hydrogenation catalyst for α,β-unsaturated aldehydes // ChemistrySelect. 2017. V. 2. N 25. P. 7535–7543. https://doi.org/10.1002/slct.201701761
  145. Song H., Liu Y., Wang Y., Feng B., Jin X., Huang T., Xiao M., Gai H. Design of hypercrosslinked poly(ionic liquid)s for efficiently catalyzing high-selective hydrogenation of phenylacetylene under ambient conditions // Mol. Catal. 2020. V. 493. June. P. 111081. https://doi.org/10.1016/j.mcat.2020.111081
  146. Liu K., Wang A., Mao Y., Jia Z., Su Y., Wen X. Synthesis of ultrafine Pd nanoparticles encapsulated in imidazolium-based porous polymers for semi-hydrogenation of alkynes // Mol. Catal. 2023. V. 543. January. P. 113130. https://doi.org/10.1016/j.mcat.2023.113130
  147. Karakhanov E., Maximov A., Zolotukhina A. Heterogeneous dendrimer-based catalysts // Polymers (Basel). 2022. V. 14. N 5. P. 981. https://doi.org/10.3390/polym14050981
  148. Yamamoto K., Imaoka T., Tanabe M., Kambe T. New horizon of nanoparticle and cluster catalysis with dendrimers // Chem. Rev. 2020. V. 120. N 2. P. 1397–1437. https://doi.org/10.1021/acs.chemrev.9b00188
  149. Kobayashi S. Nanoparticles in Catalysis. Springer International Publishing, 2020. P. 131–170. https://doi.org/10.1007/978-3-030-56630-2
  150. Fischer M., Vögtle F. Dendrimers: From design to application — A progress report // Angew. Chemie Int. Ed. 1999. V. 38. N 7. P. 884–905. https://doi.org/10.1002/(SICI)1521-3773 (19990401)38:7<884::AID-ANIE884>3.0.CO;2-K
  151. Vögtle F. Functional dendrimers // Prog. Polym. Sci. 2000. V. 25. N 7. P. 987–1041. https://doi.org/10.1016/S0079-6700(00)00017-4
  152. Tomalia D. A., Baker H., Dewald J., Hall M., Kallos G., Martin S., Roeck J., Ryder J., Smith P. A new class of polymers: Starburst-dendritic // Polym. J. 1985. V. 17. N I. P. 117–132.
  153. Maeno Z., Kibata T., Mitsudome T., Mizugaki T., Jitsukawa K., Kaneda K. Subnanoscale size effect of dendrimer-encapsulated Pd clusters on catalytic hydrogenation of olefin // Chem. Lett. 2011. V. 40. N 2. P. 180–181. https://doi.org/10.1246/cl.2011.180
  154. Wu L., Li B. L., Huang Y. Y., Zhou H. F., He Y. M., Fan Q. H. Phosphine dendrimer-stabilized palladium nanoparticles, a highly active and recyclable catalyst for the Suzuki–Miyaura reaction and hydrogenation // Org. Lett. 2006. V. 8. N 16. P. 3605–3608. https://doi.org/10.1021/ol0614424
  155. Ratheesh Kumar V. K., Gopidas K. R. Palladium nanoparticle-cored G1-dendrimer stabilized by carbon–Pd bonds: Synthesis, characterization and use as chemoselective, room temperature hydrogenation catalyst // Tetrahedron Lett. 2011. V. 52. N 24. P. 3102–3105. https://doi.org/10.1016/J.TETLET.2011.04.011
  156. Ornelas C., Aranzaes J. R., Salmon L., Astruc D. «Click» dendrimers: Synthesis, redox sensing of Pd(OAc) 2, and remarkable catalytic hydrogenation activity of precise Pd nanoparticles stabilized by 1,2,3-triazole-containing dendrimers // Chem. — A Eur. J. 2008. V. 14. N 1. P. 50–64. https://doi.org/10.1002/chem.200701410
  157. Murata M., Tanaka Y., Mizugaki T., Ebitani K., Kaneda K. Palladium-platinum bimetallic nanoparticle catalysts using dendron assembly for selective hydrogenation of dienes and their application to thermomorphic system // Chem. Lett. 2005. V. 34. N 2. P. 272–273. https://doi.org/10.1246/cl.2005.272
  158. Mizugaki T., Murata M., Fukubayashi S., Mitsudome T., Jitsukawa K., Kaneda K. PAMAM dendron-stabilised palladium nanoparticles: Effect of generation and peripheral groups on particle size and hydrogenation activity // Chem. Commun. 2008. V. 2. N 2. P. 241–243. https://doi.org/10.1039/B710860E
  159. Borkowski T., Subik P., Trzeciak A. M., Wołowiec S. Palladium(0) deposited on PAMAM dendrimers as a catalyst for C-C cross coupling reactions // Molecules. 2011. V. 16. N 1. P. 427–441. https://doi.org/10.3390/molecules16010427
  160. Wang Y., Peng X. RuRh bimetallic nanoparticles stabilized by 15-membered macrocycles-terminated poly(propylene imine) dendrimer: Preparation and catalytic hydrogenation of nitrile–butadiene rubber // Nano-Micro Lett. 2014. V. 6. N 1. P. 55–62. https://doi.org/10.5101/nml.v6i1.p55-62
  161. Karakhanov E. A., Maximov A. L., Skorkin V. A., Zolotukhina A. V., Smerdov A. S., Tereshchenko A. Y. Nanocatalysts based on dendrimers // Pure Appl. Chem. 2009. V. 81. N 11. P. 2013–2023. https://doi.org/10.1351/PAC-CON-08-10-15
  162. Караханов Э. А., Максимов А. Л., Золотухина А. В., Кардашев С. В., Филиппова Т. Ю. Наночастицы палладия на дендримерсодержащих носителях как катализаторы гидрирования непредельных углеводородов // Нефтехимия. 2012. Т. 52. № 5. С. 323–332. https://doi.org/10.1134/S0965544112050052
  163. Parenago O. P., Timashev P. S., Karakhanov E. A., Maximov A. L., Lazhko A. E., Zolotukhina A. V., Bagratashvili V. N. Obtaining of highly-active catalysts of unsaturated compounds hydrogenation by using supercritical carbon dioxide // J. Supercrit. Fluids. 2018. V. 140. P. 387–393. https://doi.org/10.1016/j.supflu.2018.07.010
  164. Geng K., He T., Liu R., Dalapati S., Tan K. T., Li Z., Tao S., Gong Y., Jiang Q., Jiang D. Covalent organic frameworks: Design, synthesis, and functions // Chem. Rev. 2020. V. 120. N 16. P. 8814–8933. https://doi.org/10.1021/acs.chemrev.9b00550
  165. Côté A. P., Benin A. I., Ockwig N. W., OʹKeeffe M., Matzger A. J., Yaghi O. M. Porous, crystalline, covalent organic frameworks // Science. 2005. V. 310. N 5751. P. 1166–1170. https://doi.org/10.1126/science.1120411
  166. Diercks C. S., Yaghi O. M. The atom, the molecule, and the covalent organic framework // Science. 2017. V. 355. N 6328. P. eaal1585. https://doi.org/10.1126/science.aal1585
  167. Guan X., Chen F., Qiu S., Fang Q. Three-dimensional covalent organic frameworks: From synthesis to applications // Angew. Chemie Int. Ed. 2023. V. 62. N 3. P. e202213203. https://doi.org/10.1002/anie.202213203
  168. Li J. H., Yu Z. W., Gao Z., Li J. Q., Tao Y., Xiao Y. X., Yin W. H., Fan Y. L., Jiang C., Sun L. J., Luo F. Ultralow-content palladium dispersed in covalent organic framework for highly efficient and selective semihydrogenation of alkynes // Inorg. Chem. 2019. V. 58. N 16. P. 10829–10836. https://doi.org/10.1021/acs.inorgchem.9b01117
  169. Li J. H., Yu Z. W., Li J. Q., Fan Y. L., Gao Z., Xiong J. B., Wang L., Tao Y., Yang L. X., Xiao Y. X., Luo F. Constructing PtI@COF for semi-hydrogenation reactions of phenylacetylene // J. Solid State Chem. 2020. V. 285. P. 121176. https://doi.org/10.1016/j.jssc.2020.121176
  170. Yun S., Lee S., Yook S., Patel H. A., Yavuz C. T., Choi M. Cross-linked «poisonous» polymer: Thermochemically stable catalyst support for tuning chemoselectivity // ACS Catal. 2016. V. 6. N 4. P. 2435–2442. https://doi.org/10.1021/acscatal.5b02613
  171. Huang N., Chen X., Krishna R., Jiang D. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization // Angew. Chemie — Int. Ed. 2015. V. 54. N 10. P. 2986–2990. https://doi.org/10.1002/anie.201411262
  172. Lu Q., Ma Y., Li H., Guan X., Yusran Y., Xue M., Fang Q., Yan Y., Qiu S., Valtchev V. Postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions // Angew. Chemie — Int. Ed. 2018. V. 57. N 21. P. 6042–6048. https://doi.org/10.1002/anie.201712246
  173. Sun Q., Aguila B., Perman J., Earl L. D., Abney C. W., Cheng Y., Wei H., Nguyen N., Wojtas L., Ma S. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal // J. Am. Chem. Soc. 2017. V. 139. N 7. P. 2786–2793. https://doi.org/10.1021/jacs.6b12885
  174. Kou J., Wang W. D., Fang J., Li F., Zhao H., Li J., Zhu H., Li B., Dong Z. Precisely controlled Pd nanoclusters confined in porous organic cages for size-dependent catalytic hydrogenation // Appl. Catal. B: Environmental. 2022. V. 315. P. 121487. https://doi.org/10.1016/j.apcatb.2022.121487
  175. Xu Y., Jin S., Xu H., Nagai A., Jiang D. Conjugated microporous polymers: Design, synthesis and application // Chem. Soc. Rev. 2013. V. 42. N 20. P. 8012–8031. https://doi.org/10.1039/c3cs60160a
  176. Lee J. S. M., Cooper A. I. Advances in conjugated microporous polymers // Chem. Rev. 2020. V. 120. N 4. P. 2171–2214. https://doi.org/10.1021/acs.chemrev.9b00399
  177. Ji D., Liang Y., Zhang C., Wang B., Zhang Z., Gao X. Preparation of palladium nanoparticles supported on conjugated microporous polymers with excellent catalytic performance // Mater. Res. Innov. 2017. V. 21. N 1. P. 10–14. https://doi.org/10.1179/1433075X15Y.0000000075
  178. Ishida T., Onuma Y., Kinjo K., Hamasaki A., Ohashi H., Honma T., Akita T., Yokoyama T., Tokunaga M., Haruta M. Preparation of microporous polymer-encapsulated Pd nanoparticles and their catalytic performance for hydrogenation and oxidation // Tetrahedron. 2014. V. 70. N 36. P. 6150–6155. https://doi.org/10.1016/j.tet.2014.04.049
  179. Trandafir M. M., Pop L., Hădade N. D., Florea M., Neațu F., Teodorescu C. M., Duraki B., van Bokhoven J. A., Grosu I., Pârvulescu V. I., Garcia H. An adamantane-based COF: Stability, adsorption capability, and behaviour as a catalyst and support for Pd and Au for the hydrogenation of nitrostyrene // Catal. Sci. Technol. 2016. V. 6. N 23. P. 8344–8354. https://doi.org/10.1039/c6cy01631f
  180. Ben T., Ren H., Shengqian M., Cao D., Lan J., Jing X., Wang W., Xu J., Deng F., Simmons J. M., Qiu S., Zhu G. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area // Angew. Chemie — Int. Ed. 2009. V. 48. N 50. P. 9457–9460. https://doi.org/10.1002/anie.200904637
  181. Tian Y., Zhu G. Porous aromatic frameworks (PAFs) // Chem. Rev. 2020. V. 120. N 16. P. 8934–8986. https://doi.org/10.1021/acs.chemrev.9b00687
  182. Yuan D., Lu W., Zhao D., Zhou H. C. Highly stable porous polymer networks with exceptionally high gas-uptake capacities // Adv. Mater. 2011. V. 23. N 32. P. 3723–3725. https://doi.org/10.1002/adma.201101759
  183. Куликов Л. А., Теренина М. В., Кряжева И. Ю., Караханов Э. А. Наноразмерные катализаторы гидрирования непредельных соединений на основе частиц палладия и платины, иммобилизованных в поры мезопористых ароматических каркасов // Нефтехимия. 2017. Т. 57. № 2. С. 163–170. https://doi.org/10.7868/S0028242117020101
  184. Karakhanov E., Maximov A., Terenina M., Vinokurov V., Kulikov L., Makeeva D., Glotov A. Selective hydrogenation of terminal alkynes over palladium nanoparticles within the pores of amino-modified porous aromatic frameworks // Catal. Today. 2020. V. 357. P. 176–184. https://doi.org/10.1016/j.cattod.2019.05.028
  185. Kulikov L., Kalinina M., Makeeva D., Maximov A., Kardasheva Y., Terenina M., Karakhanov E. Palladium catalysts based on porous aromatic frameworks, modified with ethanolamino-groups, for hydrogenation of alkynes, alkenes and dienes // Catalysts. 2020. V. 10. N 10. P. 1106. https://doi.org/10.3390/catal10101106
  186. Li L., Zhao H., Wang J., Wang R. Facile fabrication of ultrafine palladium nanoparticles with size- and location-control in click-based porous organic polymers // ACS Nano. 2014. V. 8. N 5. P. 5352–5364. https://doi.org/10.1021/nn501853g
  187. Zhong H., Liu C., Wang Y., Wang R., Hong M. Tailor-made porosities of fluorene-based porous organic frameworks for the pre-designable fabrication of palladium nanoparticles with size, location and distribution control // Chem. Sci. 2016. V. 7. N 3. P. 2188–2194. https://doi.org/10.1039/c5sc04351d
  188. Liu J., Wang N., Liu J., Li M., Xu Y., Wang C., Wang Y., Zheng H., Ma L. The immobilization of Pd(II) on porous organic polymers for semihydrogenation of terminal alkynes // ACS Appl. Mater. Interfaces. 2020. V. 12. N 46. P. 51428–51436. https://doi.org/10.1021/acsami.0c14486
  189. Шакиров И. И., Бороноев М. П., Синикова Н. А., Караханов Э. А., Максимов А. Л. Селективное гидрирование фенилацетилена на Pd-содержащем катализаторе на основе полимерного слоистого носителя // ЖПХ. 2020. Т. 93. № 2. С. 264–274. https://doi.org/10.31857/S0044461820020152 [Shakirov I. I., Boronoev M. P., Sinikova N. A., Karakhanov E. A., Maksimov A. L. Selective hydrogenation of phenylacetylene on a Pd-containing catalyst based on a polymer layered substrate // Russ. J. Appl. Chem. 2020. V. 93. N 2. P. 258–267. https://doi.org/10.1134/S1070427220020159].
  190. Kumar P., Das A., Maji B. Phosphorus containing porous organic polymers: Synthetic techniques and applications in organic synthesis and catalysis // Org. Biomol. Chem. 2021. V. 19. N 19. P. 4174–4192. https://doi.org/10.1039/d1ob00137j
  191. Ding Z. C., Li C. Y., Chen J. J., Zeng J. H., Tang H. T., Ding Y. J., Zhan Z. P. Palladium/phosphorus-doped porous organic polymer as recyclable chemoselective and efficient hydrogenation catalyst under ambient conditions // Adv. Synth. Catal. 2017. V. 359. N 13. P. 2280–2287. https://doi.org/10.1002/adsc.201700374

Supplementary files

Supplementary Files
Action
1. JATS XML
2. I

Download (178KB)
3. II

Download (119KB)
4. III

Download (292KB)
5. IV

Download (244KB)
6. V

Download (498KB)
7. VI

Download (178KB)
8. VII

Download (189KB)
9. VIII

Download (213KB)
10. IX

Download (475KB)
11. X

Download (186KB)
12. XI

Download (103KB)
13. XII

Download (412KB)
14. Fig. 1. Synthesis of Pd catalyst based on SBA-PEI material [66].

Download (143KB)
15. Fig. 2. Schematic representation of FFSiLPd catalysts (L = -NH2, -en, -den) (a), micrograph of colloidal palladium (b), distribution of palladium nanoparticles by size (c) [70].

Download (333KB)
16. Fig. 3. Synthesis of Pd catalysts in the core–shell system [77].

Download (251KB)
17. Fig. 4. Scheme of synthesis of dendrimer-containing hybrid organosilicate materials: G3-dendr-SiO2 (a), G2-dendr-meso-SiO2 (b) [80].

Download (1MB)
18. Fig. 5. Scheme of alkyne hydrogenation on the surface of unsupported and supported Pd NCs [113].

Download (184KB)
19. Fig. 6. Schematic representation of the UiO-66(Hf) framework (a), its secondary building block (b); synthesis of Pd/UiO-66(Hf) (c) and Pd@UiO-66(Hf) (d) catalysts [127].

Download (287KB)
20. Fig. 7. Scheme of synthesis of PAF-1 material (a) and its theoretical structure (b) [182].

Download (150KB)
21. Fig. 8. Scheme of synthesis of porous aromatic frameworks modified with amino groups. n is the number of benzene rings in the diboric acid used. For materials of the PAF-20 series n = 1, and for PAF-30 n = 2 [22].

Download (268KB)
22. Fig. 9. Scheme of synthesis of porous organic polymer POL-1 [191].

Download (136KB)

Copyright (c) 2024 Russian Academy of Sciences