ANALYSIS OF PERTURBATION COEFFICIENTS IN THE PROBLEM OF FILTERING NONLINEAR DISTORTIONS IN FIBER OPTICS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article is devoted to the analysis of the perturbation coefficients of the nonlinear distortion compensation model in fiber-optic communication lines. The case of long-range signal transmission is considered, for which the effect of signal dispersion is in some sense more significant than nonlinear distortion. This makes it possible to use an approximation of the nonlinear Schrodinger equation based on perturbation theory with respect to a small parameter of nonlinearity to describe the signal propagation process. Using this approximation, analytical expressions are obtained for the coefficients of the first-order model in the case of a Gaussian pulse shape. A number of numerical experiments have been carried out to study the structure of the coefficient matrix. It has been found that this matrix is well approximated by a small rank in the absence of attenuation and amplification. In addition, it was found that when taking into account the effects of signal attenuation and amplification, the rank of the matrix approaching the original matrix with a fixed error is higher than in experiments without attenuation. Research confirms that taking into account the symmetry of the matrix and its approximation with a small rank can reduce the computational complexity of the nonlinear distortion filtering algorithm for a single symbol from O(N2) to O(RN ln N), where N is the size of the matrix and R is its rank.

About the authors

I. A Kosolapov

MIPT

Email: kasolapovia@phystech.edu
Dolgoprudny, Russia

T. O Sheloput

INM RAS; MIPT

Email: sheloput@phystech.edu
Moscow, Russia; Dolgoprudny, Russia

R. R Dyachenko

Skoltech; NRU Higher School of Economics

Moscow, Russia; Moscow, Russia

N. L Zamarashkin

INM RAS

Moscow, Russia

D. A Zheltkov

INM RAS

Moscow, Russia

References

  1. Agrawal, Govind P. Nonlinear fiber optics // Nonlinear Science at the Dawn of the 21st Century. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. P. 195–211.
  2. Тахтаджян Л. А., Фаддеев Л. Д. Гамильтонов подход в теории солитонов // М.: Наука, 1986.
  3. Ip, Ezra M., Joseph M. Kahn. Fiber impairment compensation using coherent detection and digital signal processing // J. of Lightwave Technology 2009. V. 28. № 4. P. 502–519.
  4. Tao Z., Dou L., Yan W., Li L., Hoshida T., Rasmussen J.C. Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate // J. of Lightwave Technology. 2011. V. 29. № 17. P. 2570–2576.
  5. Kumar O.S.S., Amari A., Dobre O.A., Venkatesan R. Enhanced regular perturbation-based nonlinearity compensation technique for optical transmission systems // IEEE Photonics J. 2019. V. 11. № 4. P. 1–12.
  6. Kumar, Shiva, and Dong Yang. Second-order theory for self-phase modulation and cross-phase modulation in optical fibers // J. of lightwave technology 2005. V. 23. № 6. P. 2073.
  7. Soman O., Kumar S., et al. Second-order perturbation theory-based digital predistortion for fiber nonlinearity compensation // J. of Lightwave Technology 2021. V. 39. № 17. P. 5474–5485.
  8. Newell, Alan. Nonlinear optics. // CRC Press, 2018.
  9. Johannisson P., Karlsson M. Perturbation analysis of nonlinear propagation in a strongly dispersive optical communication system // J. of Lightwave Technology. 2013. V. 31. № 8. P. 1273–1282.
  10. Abramowitz, Milton, and Irene A. Stegun, eds. Handbook of mathematical functions with formulas, graphs, and mathematical tables // US Government printing office, Vol. 55. 1968.
  11. Horn R. A., Johnson C. R. Matrix analysis // Cambridge university press, 2012.
  12. Тыртышников Е. Е. Теплицевы матрицы, некоторые их аналоги и приложения // Отд. вычисл. математики АН СССР, 1989.
  13. Kumar O.S.S. A tutorial on fiber Kerr nonlinearity effect and its compensation in optical communication systems // J. of Optics. 2021. V. 23. № 123502. P. 1–24.
  14. Kolda, Tamara G., Brett W. Bader. Tensor decompositions and applications // SIAM review 2009. V. 51. № 3. P. 455–500.
  15. Решетняк Ю. Г. Курс математического анализа. Ч. II, кн. 1 // Новосибирск: Изд-во Ин-та математики, 2000.
  16. Bunse-Gerstner A., Gragg W. B. Singular value decompositions of complex symmetric matrices // J. of Computational and Applied Mathematics. 1988. V. 21. № 1. P. 41–54.
  17. Mecozzi A., Clausen C. B., Shtaif M. Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission // IEEE Photonics Technology Letters. 2000. V. 12. № 4. P. 392–394.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences