WALKING OF A DECEREBRATE CAT AT SIMULTANEOUSLY DIFFERENT SPEEDS ON A SPLIT TREDBAN
- Authors: Lyakhovetskii V.A.1, Shkorbatova P.Y.2,3, Gorskii O.V.4,3, Musienko P.E.4,3, Merkulyeva N.2
-
Affiliations:
- Pavlov Institute of Physiology, Russian Academy of Sciences, Physiology of Movements lab.
- Pavlov Institute of Physiology, Russian Academy of Sciences, Neuromorphology lab.
- Institute of Translational Biomedicine, Saint-Petersburg State University, Neuroprostheses lab.
- Pavlov Institute of Physiology, Russian Academy of Sciences, Neuromodulation of Motor and Visceral Functions lab.
- Issue: Vol 73, No 1 (2023)
- Pages: 76-87
- Section: ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ПОВЕДЕНИЯ ЖИВОТНЫХ: ВОСПРИЯТИЕ ВНЕШНИХ СТИМУЛОВ, ДВИГАТЕЛЬНАЯ АКТИВНОСТЬ, ОБУЧЕНИЕ И ПАМЯТЬ
- URL: https://kld-journal.fedlab.ru/0044-4677/article/view/652053
- DOI: https://doi.org/10.31857/S0044467723010100
- EDN: https://elibrary.ru/GJNJQX
- ID: 652053
Cite item
Abstract
The decisive role of sensory input in the initiation and modulation of locomotion has been shown repeatedly. One way to explore this input is the “split” treadmill paradigm. In the present study, a comparative analysis of the walking of a decerebrate cat on a split treadmill was carried out, the belts of which moved not only at different speeds (differed by 3 times), but also in different directions (forward and backward). The reciprocal work of two limbs, as well as the flexor and extensor muscles of each limb, is shown in such a locomotor mode. Two main walking strategies were identified: in response to one step of the limb walking along the slow treadmill belt, the limb walking along the fast belt made either one (1 : 1 mode) or two steps (1 : 2); strategies could interchange. The results of the study suggest the preservation of the integration of the locomotor networks of the two limbs with a significant mismatch of their sensory inputs.
About the authors
V. A. Lyakhovetskii
Pavlov Institute of Physiology, Russian Academy of Sciences, Physiology of Movements lab.
Email: mer-natalia@yandex.ru
Russia, St. Petersburg
P. Y. Shkorbatova
Pavlov Institute of Physiology, Russian Academy of Sciences, Neuromorphology lab.; Institute of Translational Biomedicine, Saint-Petersburg State University, Neuroprostheses lab.
Email: mer-natalia@yandex.ru
Russia, St. Petersburg; Russia, St. Petersburg
O. V. Gorskii
Pavlov Institute of Physiology, Russian Academy of Sciences,Neuromodulation of Motor and Visceral Functions lab.; Institute of Translational Biomedicine, Saint-Petersburg State University, Neuroprostheses lab.
Email: mer-natalia@yandex.ru
Russia, St. Petersburg; Russia, St. Petersburg
P. E. Musienko
Pavlov Institute of Physiology, Russian Academy of Sciences,Neuromodulation of Motor and Visceral Functions lab.; Institute of Translational Biomedicine, Saint-Petersburg State University, Neuroprostheses lab.
Email: mer-natalia@yandex.ru
Russia, St. Petersburg; Russia, St. Petersburg
N.S. Merkulyeva
Pavlov Institute of Physiology, Russian Academy of Sciences, Neuromorphology lab.
Author for correspondence.
Email: mer-natalia@yandex.ru
Russia, St. Petersburg
References
- Вещицкий А.А., Ляховецкий В.А., Горский О.В., Мусиенко П.Е., Меркульева Н.С. Что может рассказать двунаправленная ходьба о центральных генераторах паттерна? Журнал высш нервн. деят. им. И.П. Павлова. 2022. 72 (2): 248–262.
- Кулагин А.С., Шик М.Л. Взаимодействие симметричных конечностей при управляемой локомоции. Биофизика. 1970. 15 (1): 164–170.
- Akay T., McVea D.A., Tachibana A., Pearson K.G. Coordination of fore and hind leg stepping in cats on a transversely-split treadmill. Exp Brain Res. 2006. 75 (2): 211–222.
- Buford J.A., Zernicke R.F., Smith J.L. Adaptive control for backward quadrupedal walking. I. Posture and hindlimb kinematics. J. Neurophysiol. 1990. 64 (3): 745–755.
- Choi J.T., Bastian A.J. Adaptation reveals independent control networks for human walking. Nat. Neurosci. 2007. 10 (8): 1055–1062.
- Forssberg H., Grillner S., Halbertsma J., Rossignol S. The locomotion of the low spinal cat. II. Interlimb coordination. Acta Physiol. Scand. 1980. 108 (3): 283–295.
- Frigon A. The neural control of interlimb coordination during mammalian locomotion. J. Neurophysiol. 2017. 117 (6): 2224–2241.
- Frigon A., Desrochers E., Thibaudier Y., Hurteau M.F., Dambreville C. Left-right coordination from simple to extreme conditions during split-belt locomotion in the chronic spinal adult cat. J. Physiol. 2017. 595 (1): 341–361.
- Gerasimenko Y., Musienko P., Bogacheva I., Moshonkina T., Savochin A., Lavrov I., Roy R.R., Edger-ton V.R. Propriospinal bypass of the serotonergic system that can facilitate stepping. J. Neurosci. 2009. 29 (17): 5681–5689.
- Halbertsma J. The stride cycle of the cat: the modelling of locomotion by computerized analysis of automatic recordings. Acta Physiol. Scand. Suppl. 1983. 521, 1–76.
- Kim S.A., Heinze K.G., Schwille P. Fluorescence correlation spectroscopy in living cells. Nat. Methods. 2007. 4 (11): 963–973.
- Kuczynski V., Telonio A., Thibaudier Y., Hurteau M.F., Dambreville C., Desrochers E., Doelman A., Ross D., Frigon A. Lack of adaptation during prolonged split-belt locomotion in the intact and spinal cat. J. Physiol. 2017. 595 (17): 5987–6006.
- Lyakhovetskii V., Merkulyeva N., Gorskii O., Musienko P. Simultaneous bidirectional hindlimb locomotion in decerebrate cats. Sci. Rep. 2021. 11 (1): 3252.
- Maxwell D.J., Soteropoulos D.S. The mammalian spinal commissural system: properties and functions. J. Neurophysiol. 2020. 123 (1): 4–21.
- Merkulyeva N., Veshchitskii A., Gorsky O., Pavlova N., Zelenin P.V., Gerasimenko Y., Deliagina T.G., Musienko P. Distribution of spinal neuronal networks controlling forward and backward locomotion. J. Neurosci. 2018. 38 (20): 4695–4707.
- Musienko P., Courtine G., Tibbs J.E., Kilimnik V., Savochin A., Garfinkel A., Roy R.R., Edgerton V.R., Gerasimenko Y. Somatosensory control of balance during locomotion in decerebrated cat. J. Neurophysiol. 2012. 107 (8): 2072–2082.
- Pearson K.G., Duysens J. Function of segmental reflexes in the control of stepping in cockroaches and cats. Neural control of locomotion. Advances in behavioral biology. Eds. Herman R.M., Grillner S., Stein P.S.G., Stuart D.G. Springer US, 1976. 519–537 pp.
- Reisman D.S., Block H.J., Bastian A.J. Interlimb coordination during locomotion: What can be adapted and stored? J. Neurophysiol. 2005. 94 (4): 2403–2415.
- Rossignol S., Dubuc R., Gossard J.-P. Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 2006. 86 (1): 89–154.
- Shkorbatova P.Y., Lyakhovetskii V.A., Merkulyeva N.S., Veshchitskii A.A., Bazhenova E.Y., Laurens J., Pavlova N.V., Musienko P.E. Prediction algorithm of the cat spinal segments lengths and positions in relation to the vertebrae. Anat. Rec. 2019. 302 (9): 1628–1637.
- Shapkova E.Y. Spinal locomotor capability revealed by electrical stimulation of the lumbar enlargement in paraplegic patients. In: Latash M, Levin M, editors. Progress in Motor Control. Human Kinetics Publishers; 2004. 253–289.
- Thelen E., Ulrich B.D., Niles D. Bilateral coordination in human infants: stepping on a split-belt treadmill. J. Exp. Psychol. Hum. Percept. Perform. 1987. 13 (3): 405–410.
- Yanagihara D., Udo M., Kondo I., Yoshida T. A new learning paradigm: adaptive changes in interlimb coordination during perturbed locomotion in decerebrate cats. Neurosci Res. 1993. 18 (3): 241–244.
- Yang J.F., Lamont E.V., Pang M.Y. Split-belt treadmill stepping in infants suggests autonomous pattern generators for the left and right leg in humans. J. Neurosci. 2005. 25 (29): 6869–6876.
Supplementary files
