The impact of the type of playful massage movements on the perception of tactile stimulation in children: EEG study

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Tactile play and playful massage are a normal interaction between adults and children in many cultures. Experimental data show that activation of the C-tactile system during such playful touches contributes to children’s socialization and the establishment of psychoemotional bonds in the parent-child dyad. However, comprehensive studies of the effects of different types of touch on perception of tactile stimulation in children have not been conducted before. Twenty-three children participated in the present study: 10 in the preschool age group and 13 in the elementary school age group. Children in both groups received play massage containing different types of touch with simultaneous recording of electroencephalogram (EEG) and heart rate. EEG processing included determination of spectral power, alpha rhythm peak frequency and fractal dimension. Analysis of the results showed that the relaxing effect of the procedure was more pronounced in children of primary school age, which can be explained both by the greater maturity of the CNS and the greater need for tactile contact, which is not realized in the school environment.

Full Text

Restricted Access

About the authors

E. A. Dydenkova

State Institute of the Russian Language named after A.S. Pushkin; Kozma Minin Nizhny Novgorod State Pedagogical University

Author for correspondence.
Email: dydenkovaeva@gmail.com
Russian Federation, Moscow; Nizhny Novgorod

E. V. Zhukova

State Institute of the Russian Language named after A.S. Pushkin

Email: dydenkovaeva@gmail.com
Russian Federation, Moscow

G. М. Khairulina

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

Email: dydenkovaeva@gmail.com
Russian Federation, Moscow

L. A. Mayorova

State Institute of the Russian Language named after A.S. Pushkin; Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

Email: dydenkovaeva@gmail.com
Russian Federation, Moscow; Moscow

G. V. Portnova

State Institute of the Russian Language named after A.S. Pushkin; Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

Email: dydenkovaeva@gmail.com
Russian Federation, Moscow; Moscow

References

  1. Дыденкова Е.А., Теплова А.Б. Традиционная игра как условие проявления сорадования у детей 8–9 лет. Комплексные исследования детства. 2023. 5(1): 64-75. https://doi.org/10.33910/2687-0223-2023-5-1-64-75
  2. Леонтьев А.Н. Деятельность. Сознание. Личность (idem). М., 1977.
  3. Теплова А.Б., Чернушевич В.А. Аксиологический и методологический анализ народных игр. Психолого-педагогические исследования, 2021. 13 (4): 22–38. https://doi.org/10.17759/psyedu.2021130402
  4. Портнова Г.В., Танькина О.А., Скороходов И.В., Шпицберг И.Л., Варламов А.А. ЭЭГ-корреляты особенностей восприятия тактильных стимулов у детей с расстройствами аутистического спектра. Современные технологии в медицине. 2019. 11(1): 169–176. https://doi.org/10.17691/stm2019.11.1.20
  5. Ackerley R., Olausson H., Wessberg J., McGlone F. Wetness perception across body sites. Neuroscience letters. 2012. 522(1): 73–77. https://doi.org/10.1016/j.neulet.2012.06.020
  6. Ackerley R., Wasling H. B., Liljencrantz J., Olausson H., Johnson R. D., Wessberg J. Human C-tactile afferents are tuned to the temperature of a skin-stroking caress. Journal of Neuroscience. 2014. 34(8): 2879–2883. https://doi.org/10.1523/JNEUROSCI.2847-13.2014
  7. Ackerley R., Saar K., McGlone F., Backlund Wasling H. Quantifying the sensory and emotional perception of touch: differences between glabrous and hairy skin. Frontiers in behavioral neuroscience. 2014. 8 (34). https://doi.org/10.3389/fnbeh.2014.00034
  8. Ackerley R. C-tactile (CT) afferents: evidence of their function from microneurography studies in humans. Current Opinion in Behavioral Sciences. 2022. 43: 95-100. https://doi.org/10.1016/j.cobeha.2021.08.012
  9. Ali S.H., Makdani A.D., Cordero M.I., Paltoglou A.E., Marshall A.G., McFarquhar M.J. Trotter P.D. Hold me or stroke me? Individual differences in static and dynamic affective touch. PloS one. 2023. 18(5): e0281253. https://doi.org/10.1371/journal.pone.0281253
  10. Bendas J., Ree A., Pabel L., Sailer U., Croy I. Dynamics of affective habituation to touch differ on the group and individual level. Neuroscience. 2021. 464: 44-52. https://doi.org/10.1016/j.neuroscience.2020.12.024
  11. Berchicci M., Zhang T., Romero L., Peters A., Annett R., Teuscher U., ... Comani S. Development of mu rhythm in infants and preschool children. Developmental neuroscience. 2011. 33(2): 130-143.
  12. Bornas X., Tortella-Feliu M., Balle M., Llabres J. Self-focused cognitive emotion regulation style as associated with widespread diminished EEG fractal dimension. Int J Psychol. 2013. 48: 695-703.
  13. Bremner A. J., Spence C. The development of tactile perception. Advances in child development and behavior. 2017. 52: 227-268. https://doi.org/10.1016/bs.acdb.2016.12.002
  14. Bowlby J. Maternal Care and Mental Health. Geneva, Switzerland: World Health Organization. 1952. P. 183. https://doi.org/10.1097/00001888-195107000-00034.
  15. Carozza S., Leong V. The role of affectionate caregiver touch in early neurodevelopment and parent–infant interactional synchrony. Frontiers in neuroscience. 2021. 14: 613378. https://doi.org/10.3389/fnins.2020.613378
  16. Case L.K., Liljencrantz J., McCall M.V., Bradson M., Necaise A., Tubbs J., Bushnell M.C. Pleasant deep pressure: expanding the social touch hypothesis. Neuroscience. 2021. 464: 3-11. https://doi.org/10.1016/j.neuroscience.2020.07.050
  17. Courtney A.J Nolan R.D. Touch in Child Counseling and Play Therapy. 2017. New York, NY: Routledge. ISBN 9781138638525.
  18. Croy I., Fairhurst M.T., McGlone F. The role of C-tactile nerve fibers in human social development. Current Opinion in Behavioral Sciences. 2022. 43: 20-26. https://doi.org/10.1016/j.cobeha.2021.06.010
  19. Croy I., Bierling A., Sailer U., Ackerley R. Individual variability of pleasantness ratings to stroking touch over different velocities. Neuroscience. 2021. 464: 33-43. https://doi.org/10.1016/j.neuroscience.2020.03.030
  20. Cruciani G., Zanini L., Russo V., Boccardi E., Spitoni G.F. Pleasantness ratings in response to affective touch across hairy and glabrous skin: a meta-analysis. Neuroscience Biobehavioral Reviews. 2021. 131: 88-95. https://doi.org/10.1016/j.neubiorev.2021.09.026
  21. Diego M.A., Field T. Moderate pressure massage elicits a parasympathetic nervous system response. International Journal of Neuroscience. 2009. 119(5): 630-638. https://doi.org/10.1080/00207450802329605
  22. Essick G.K., McGlone F., Dancer C., Fabricant D., Ragin Y., Phillips N., Jones T.,Guest S. Quantitative assessment of pleasant touch. Neuroscience Biobehavioral Reviews. 2010. 34(2): 192-203. https://doi.org/10.1016/j.neubiorev.2009.02.003
  23. Essick G.K., James A., McGlone F.P. Psychophysical assessment of the affective components of non-painful touch. Neuroreport. 1999. 10(10): 2083-2087. doi: 10.1097/00001756-199907130-00017
  24. Fairhurst M.T., Löken L., Grossmann T. Physiological and behavioral responses reveal 9-month-old infants’ sensitivity to pleasant touch. Psychological science. 2014. 25(5): 1124–1131. https://doi.org/10.1177/0956797614527114
  25. Field T. Social touch, CT touch and massage therapy: A narrative review. Developmental Review. 2019. 51: 123–145. https://doi.org/10.1016/j.dr.2019.01.002
  26. Field T., Diego M., Hernandez-Reif M. Massage therapy research. Developmental Review. 2007. 27(1): 75–89. https://doi.org/10.1016/j.dr.2005.12.002
  27. Hsiao S. Central mechanisms of tactile shape perception. Current opinion in neurobiology. 2008. 18(4): 418–424. https://doi.org/10.1016/j.conb.2008.09.001
  28. Hurlemann R., Scheele D. Dissecting the role of oxytocin in the formation and loss of social relationships. Biological Psychiatry. 2016. 79(3): 185–193. https://doi.org/10.1016/j.biopsych.2015.05.013
  29. Imeraj L., Antrop I., Roeyers H., Deschepper E., Bal S., Deboutte D. Diurnal variations in arousal: a naturalistic heart rate study in children with ADHD. European child adolescent psychiatry. 2011. 20: 381–392. https://doi.org/ 10.1007/с00787-011-0188-у
  30. Johnson K.O., Yoshioka T., Vega-Bermudez F. Tactile Functions of Mechanoreceptive Afferents Innervating the Hand. Journal of Clinical Neurophysiology. 2000. 17(6): 539–558. https://doi.org/ 10.1097/00004691-200011000-00002
  31. Kandel E., Schwartz H., Jessell M., Siegelbaum S., Hudspeth A., Mack S. Principles of neural science. 2000. New York: McGraw-hill. Jan.
  32. Lapomarda G., Valer S., Job R., Grecucci A. Built to last: Theta and delta changes in resting‐state EEG activity after regulating emotions. Brain and Behavior. 2022. 12(6): e2597. https://doi.org/10.1002/brb3.2597
  33. Leventhal A., Martin R., Seals R., Tapia E., Rehm L. Investigating the dynamics of affect: Psychological mechanisms of affective habituation to pleasurable stimuli. Motivation and Emotion. 2007. 31: 145–57. https://doi.org/10.1007/s11031-007-9059-8
  34. Lo C., Chu S.T., Penney T.B., Schirmer A. 3D hand-motion tracking and bottom-up classification sheds light on the physical properties of gentle stroking. Neuroscience. 2021. 464: 90–104. https://doi.org/10.1016/j.neuroscience.2020.09.037
  35. Löken L.S., Wessberg J., Morrison I., McGlone F., Olausson H. Coding of pleasant touch by unmyelinated afferents in humans. Nature neuroscience. 2009. 12(5): 547–548. https://doi.org/10.1038/nn.2312
  36. Manzotti A., Cerritelli F., Esteves J.E., Lista G., Lombardi E., La Rocca S., Gallace A., McGlone F.P.,Walker S.C. Dynamic touch reduces physiological arousal in preterm infants: A role for c-tactile afferents? Developmental Cognitive Neuroscience. 2019. 39: 1–7. https://doi.org/10.1016/j.dcn.2019.100703
  37. Marshall A.G., Sharma M.L., Marley K., Olausson H., McGlone F. Spinal signalling of C-fiber mediated pleasant touch in humans. eLife. 2019. 8:e51642. https://doi.org/10.7554/eLife.51642
  38. McGlone F., Wessberg J., Olausson H. Discriminative and affective touch: sensing and feeling. Neuron. 2014. 737–755. https://doi.org/10.1016/j.neuron.2014.05.001
  39. McGlone F., Vallbo A.B., Olausson H., Loken L., Wessberg J. Discriminative touch and emotional touch. Canadian Journal of Experimental Psychology. Revue canadienne de psychologie expérimentale. 2007. 3: 173–183. https://doi.org/10.1037/cjep2007019
  40. McIntyre S., Nagi S.S., McGlone F., Olausson H. The effects of ageing on tactile function in humans. Neuroscience. 2021 464: 53–58. https://doi.org/10.1016/j.neuroscience.2021.02.015
  41. Mierau A, Klimesch W, Lefebvre J. State-dependent alpha peak frequency shifts: Experimental evidence, potential mechanisms and functional implications. Neuroscience. 2017. 360: 146–154. https://doi.org/10.1016/j.neuroscience.2017.07.037
  42. Mierau A., Felsch M., Hülsdünker T., Mierau J., Bullermann P., Weiß B., Strüder H. K. The interrelation between sensorimotor abilities, cognitive performance and individual EEG alpha peak frequency in young children. Clinical Neurophysiology. 2016. 127(1): 270–276.
  43. Montague A. Touching: The human significance of the skin. 1986. Harper Row.
  44. Morrison I., Löken L. S., Olausson H. The skin as a social organ. Experimental brain research. 2010. 204: 305–314. https://doi.org/10.1007/s00221-009-2007-y
  45. Morrison I. CT afferent-mediated affective touch: brain networks and functional hypotheses. Affective touch and the neurophysiology of CT afferents. 2016. 195–208. https://doi.org/10.1007/978-1-4939-6418-5_12
  46. Mountcastle V. The sensory hand: neural mechanisms of somatic sensation. Harvard University Press. 2005. Dec 30.
  47. Olausson H., Lamarre Y., Backlund H., Morin C., Wallin B.G., Starck G. et al. Unmyelinated tactile afferents signal touch and project to insular cortex. Nature neuroscience. 2002. 5(9): 900–904. https://doi.org/10.1038/nn896
  48. Pawling R., Cannon P.R., McGlone F.P., Walker S.C. C-tactile afferent stimulating touch carries a positive affective value. PloS one. 2017. 12(3): 1–15.
  49. https://doi.org/10.1371/journal.pone.0173457
  50. Portnova G.V., Atanov M.S. Nonlinear EEG parameters of emotional perception in patients with moderate traumatic brain injury, coma, stroke and schizophrenia. AIMS Neurosci. 2018. 5: 221–235.
  51. Portnova G.V., Atanov M.S. Age-dependent changes of the EEG data: comparative study of correlation dimension D2, spectral analysis, peak alpha frequency and stability of rhythms. International Journal of Innovative Research in Computer Science Technology. 2016. 4(2).
  52. Portnova G.V., Maslennikova A.V., Proskurnina E.V. The Relationship between Carotid Doppler Ultrasound and EEG Metrics in Healthy Preschoolers and Adults. Brain Sciences. 2020. 10(10): 755.
  53. Portnova G.V., Proskurnina E.V., Sokolova S.V., Skorokhodov I.V., Varlamov A.A. Perceived pleasantness of affective touch in healthy individuals is related to salivary oxytocin response and EEG markers of arousal. Experimental Brain Research. 2020. 238: 2257–2268. https://doi.org/10.1007/s00221-020-05891-y
  54. Reece C., Ebstein R., Cheng X., Ng T., Schirmer A. Maternal touch predicts social orienting in young children. Cognitive Development. 2016. 39: 128–140. https://doi.org/10.1016/j.cogdev.2016.05.001
  55. Schirmer A., Lai O., Cham C., Lo C. Velocity-tuning of somatosensory EEG predicts the pleasantness of gentle caress. NeuroImage. 2023. 265: 119811. https://doi.org/10.1016/j.neuroimage.2022.119811.
  56. Sailer U., Leknes S. Meaning makes touch affective. Current Opinion in Behavioral Sciences. 2022. 44: 101099. https://doi.org/10.1016/j.cobeha.2021.101099
  57. Schirmer A., Cham C., Lai O., Le T.-l.S., Ackerley R. Stroking trajectory shapes velocity effects on pleasantness and other touch percepts. Journal of Experimental Psychology: Human Perception and Performance. 2023. 49(1): 71–86. https://doi.org/10.1037/xhp0001079
  58. Srinivasan R. Spatial structure of the human alpha rhythm: global correlation in adults and local correlation in children. Clinical Neurophysiology. 1999. 110(8): 1351–1362.
  59. Schwarz C. The slip hypothesis: tactile perception and its neuronal bases. Trends in neurosciences. 2016. 39(7): 449–462. https://doi.org/10.1016/j.tins.2016.04.008
  60. Walker S.C., Cavieres A., Peñaloza-Sancho V., El-Deredy W., McGlone F. Dagnino-Subiabre A. C‐low threshold mechanoa fferent targeted dynamic touch modulates stress resilience in rats exposed to chronic mild stress. European Journal of Neuroscience. 2022. 55(9): P. 1–14. https://doi.org/10.1111/ejn.14951
  61. Vallbo A.B., Johansson R.S. Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum neurobiol. 1984. 3(1): 3–14.
  62. Van Puyvelde M., Gorissen A.S., Pattyn N., McGlone F. Does touch matter? The impact of stroking versus non-stroking maternal touch on cardio-respiratory processes in mothers and infants. Physiology behavior. 2019. 207: 55–63. https://doi.org/10.1016/j.physbeh.2019.04.024
  63. Von Mohr M., Crowley M.J., Walthall J. EEG captures affective touch: CT-optimal touch and neural oscillations. Cogn Affect Behav Neurosci. 2018. 18: 155–166. https://doi.org/10.3758/s13415-017-0560-6.
  64. Wijaya M., Lau D., Horrocks S., McGlone F., Ling H., Schirmer A. The human “feel” of touch contributes to its perceived pleasantness. Journal of Experimental Psychology: Human Perception and Performance. 2020. 46(2): 155–171.
  65. https://doi.org/10.1037/xhp0000705
  66. WHO Immediate KMC Study Group. Immediate “kangaroo mother care” and survival of infants with low birth weight. New England Journal of Medicine. 2021. 384(21): 2028–2038. https://doi.org.10.1056/NEJMoa2026486
  67. Yu J., Yang J., Yu Y., Wu Q., Takahashi S., Ejima Y., Wu J. Stroking hardness changes the perception of affective touch pleasantness across different skin sites. Heliyon. 2019. 5(8). https://doi.org/10.1016/j.heliyon.2019.e02141
  68. Yu H., Miao W., Ji E., Huang S., Jin S., Zhu X. et al. Social touch-like tactile stimulation activates a tachy kinin 1-oxytocin pathway to promote social interactions. Neuron. 2022. 110(6): 1051–1067. https://doi.org/10.1016/j.neuron.2021.12.022
  69. Zouaoui I., Zellag M., Hernout J., Dumais A., Potvin S., Lavoie M. E. Alpha and theta oscillations during the cognitive reappraisal of aversive pictures: A spatio-temporal qEEG investigation. International Journal of Psychophysiology. 2023. 192: 13–25. https://doi.org/10.1016/j.ijpsycho.2023.07.001

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Graphic description of the massage story “Weather Forecast”, consisting of three stages. Each stage (а, б, в) includes three main movements. Explanations of movements – (г)

Download (437KB)
3. Fig. 2. Each story includes three schematic illustrations (1, 2, 3). Graphic description of the massage story “Rails-Rails” – (a). Graphic description of the massage story “Let’s Bake a Pie” – (б). Graphic description “Let’s comb the horse” – (в). Explanations of movements – (г)

Download (425KB)
4. Fig. 3. Flowchart of the study design, reflecting the data recording protocol using labels 0 – 8

Download (140KB)
5. Fig. 4. Subjective assessment by experts of the behavior of preschool and school-age children before and after the play massage procedure

Download (73KB)
6. Fig. 5. (a) – decrease in heart rate by the end of the first story – В (A – the first stage of the first story; Б – the second stage of the first story; В – the third stage and completion of the first story; Г – the second story; Д – the third story; Е – fourth story). (б) – increase in SDRR by the end of the first story – В

Download (186KB)
7. Fig. 6. Changes in the APF (a), FR (Б) and slow-wave activity power (В) with different types of massage movements (A – Е) and at rest (background). A – the first stage of the first story, Б – the second stage of the first story, В – the third stage of the first story, Г – the second story, Д – the third story, Е – the fourth story

Download (152KB)

Copyright (c) 2024 Russian Academy of Sciences