Dependency of amplitude and phase characteristics of vasomotor oscillations on visual stimulation conditions and experiment duration

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The intrinsic-signal optical imaging is widely used in experimental, theoretical and applied research of the mammal’s brain neocortex functional anatomy. However, a neural activity signal is hidden by the background activity, the amplitude of which is an order of magnitude larger than the mapping signal amplitude. Most of such background activity represents spontaneous oscillations in 0.01–0.15 Hz frequency range related to vasomotor oscillations. In this paper, we point out that such oscillations change their power and phase during the response time course. The most dramatic influence is intrinsic for 0.05–0.15 Hz oscillations. The power of vasomotor oscillations declines more quickly than the stability features of their phase characteristics. Departing from these data, we suggested approaches for minimization of role of vasomotor oscillations in functional maps resulting from intrinsic-signal optical imaging.

Full Text

Restricted Access

About the authors

S. A. Kozhukhov

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

Author for correspondence.
Email: sergei.kozhukhov@ihna.ru
Russian Federation, Moscow

K. A. Saltykov

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

Email: sergei.kozhukhov@ihna.ru
Russian Federation, Moscow

I. V. Bondar

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

Email: sergei.kozhukhov@ihna.ru
Russian Federation, Moscow

References

  1. Арнольд В.И. Теория катастроф. М.: Едиториал УРСС. 2008.
  2. Бугрова В.С., Бондарь И.В. Устойчивость функциональных доменов ориентационной и дирекциональной чувствительности первичной зрительной коры кошки к воздействию пропофола. Журн. высш. нервн. деят. им. И.П. Павлова. 2019. 69 (2): 218–229.
  3. Кожухов С.А., Салтыков К.А., Бондарь И.В. Оптическое картирование зрительной коры: спектральные и амплитудные характеристики вазомоторных колебаний. Журн. высш. нервн. деят. им. И.П. Павлова. 2022. 72 (6): 880–895.
  4. Латанов А.В., Панкова Н.Б. Использование метода БОС-коррекции для оптимизации функционального состояния организма человека при высокогорном восхождении. Экология человека. 2018. 25 (4): 22–29.
  5. Bibolett-Bahena O., Tissier S., Ho-Tran S., Rojewski A., Casanova C. Enriched environment exposure during deve lopment positively impacts the structure and function of the visual cortex in mice. Sci. Rep. 2023. 13(1): 7020.
  6. Bian N., Yuan Y., Li Y., Liu M., Li X. Low-intensity pulsed ultrasound stimulation inhibits cortical spreading depression. Cereb. Cortex. 2021. 531 (8): 3872–3880.
  7. Bice A.R., Xiao Q., Kong J., Yan P., Rosenthal Z.P., Kraft A.W., Smith K.P., Wieloch T., Lee J.M., Culver J.P., Bauer A.Q. Homotopic contralesional excitation suppresses spontaneous circuit repair and global network reconnections following ischemic stroke. Elife. 2022. 11: e68852.
  8. Bonhoeffer T., Grinvald A. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature. 1991. 353 (6343): 429–431.
  9. Cai X., Xu H., Han C., Li P., Wang J., Zhang R., Tang R., Fang C., Yan K., Song Q., Liang C., Lu H.D. Mesoscale functional connectivity in macaque visual areas. Neuroimage. 2023. 271: 120019.
  10. Chung D.Y., Oka F., Jin G., Harriott A., Kura S., Aykan S.A., Qin T., Williams J.E., Lee H., Yaseen M.A., Sakadzic S., Boas D.A., Whalen M.J., Ayata C. Subarachnoid hemorrhage leads to early and persistent functional connectivity and behavioral changes in mice. J. Cereb. Blood Flow Metab. 2021. 41 (5): 975–985.
  11. Du X., Jiang X., Kuriki I., Takahata T., Zhou T., Roe A.W., Tanigawa H. Representation of cone-opponent color space in macaque early visual cortices. Front. Neurosci. 2022. 16: 891247.
  12. Fang C., Cai X., Lu H. Orientation anisotropies in macaque visual areas. Proc. Natl. Acad. Sci. USA. 2022. 119 (15): e2113407119.
  13. Friedman R.M., Gehade N.G., Roe A.W., Gharbawie O.A. Optical imaging reveals functional domains in primate sensorimotor cortex. Neuroimage. 2020. 221: 117188.
  14. Fukunaga M., Horovitz S.G., van Gelderen P., Zwart J.A., Jansuma J.M., Ikonomidou V.N., Chu R., Deckers R.H.R., Leopold D.A., Duyn J.H. Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages. Magn. Reson. Imaging. 2006. 24 (8): 979–992.
  15. Griffith T.M., Edwards D.H. Fractal analysis of role of smooth muscle Ca2+ fluxes in genesis of chaotic arterial pressure oscillations. Am. J. Physiol. 1994. 266 (5 Pt 2): H1801–H1811.
  16. Julien C., Zhang Z.Q., Cerutti C., Barres C. Hemodynamic analysis of arterial pressure oscillations in conscious rats, J. Auton, Nerv. Syst. 1995. 50 (3): 239–252.
  17. Hald B.O., Sorensen R.B., Sorensen P.G., Sorensen C.M., Jacobsen J.C.B. Stimulation history affects vasomotor responses in rat mesenteric arterioles. Pflugers Arch. 2019. 471 (2): 271–283.
  18. Holm S. A simple sequentially rejective multiple test procedure. Scand. J. Statistics. 1979. 6(2): 65–70.
  19. Kalatsky V.A., Stryker M.P. New paradigm map for optical imaging: temporally encoded maps of intrinsic signals. Neuron. 2003. 38 (4): 529–545.
  20. Kozhukhov S.A., Ivanov R.S., Bugrova V.S., Verkhlyutov V.M., Ushakov V.L. Functional asymmetry of local connections in V1 and its impact on orientation tuning. Proc. Comp. Sci. 2020. 169: 620–639.
  21. Lai J.H., Qin T., Sakadzic S., Ayata C., Chung D. Cortical spreading depolarizations in a mouse model of subarachnoid hemorrhage. Neurocrit. Care. 2022. 37: 123–132.
  22. Li M., Chen X., Yuan N., Lu Y., Liu Y., Gong H., Qian L., Andolina I.M., Wu J., Zhang S., McLoughlin N., Sun X., Wang W. Effects of acute high intraocular pressure on red-green and blue-yellow cortical color responses in non-human primates. Neuroimage Clin. 2022. 35: 103092.
  23. Lu H.D., Chen G., Cai J., Roe A.W. Intrinsic signal optical imaging of visual brain activity: tracking of fast cortical dynamics. Neuroimage. 2017. 148: 160–168.
  24. Machado C., Estevez M., Perez-Nellar J., Schiavi A. Residual vasomotor activity assessed by heart rate variabi lity in a brain-dead case. BMJ Case Rep. 2015. 2015: bcr2014205677.
  25. Mayhew J.E., Zheng A.Y., Westby G.W., Redgrave P., Rector D.M., Harper R.M. Cerebral vasomotion: a 0.1-Hz oscillation in reflected light imaging of neural activity. Neuroimage. 1996. 4 (3 Pt 1): 183–193.
  26. Nsigani A., Rosario J.D., Yeh A.C., Shin D., Wells S., Lev-Ari T., Williams B., Haider B. Optimizing intact skull intrinsic signal imaging for subsequent targeted electrophysiology across mouse visual cortex. Sci. Rep. 2022. 12 (1): 2063.
  27. Olschfagel M., Polanski W.H., Morgenstern U., Steiner G., Kirsch M., Koch E., Schackert G., Sobbotka S. Characterization of cortical hemodynamic changes following sensory, visual and speech activation by intraoperative optical imaging utilizing phase-based evaluation methods. Hum. Brain Mapp. 2022. 43 (2): 598–615.
  28. Partimos D., Haddock R.E., Hill C.E., Griffith T.M. Dyna mics of three-variable nonlinear model of vasomotion: comparison of theory and experiment. Biophys. J. 2007. 93 (5): 1534–1556.
  29. Pradhan R.K., Chakravarthy V.S. Information dynamics of vasomotion in microvascular networks: a review. Acta Physiol (Oxf). 2011. 201 (2): 193–218.
  30. Peng H., Matchkov V.A., Aalkjaer C., Nilsson H. Hypo thesis for the initiation of vasomotion. Circ. Res. 2001. 88 (8): 810–815.
  31. Takato R., Korhonen I., Majahalme S., Tuomisto M., Turjanmaa V. Circadian profile of low-frequency oscillations in blood pressure and heart rate in hypertension. Am. J. Hypertens. 1999. 12 (9 Pt. 1): 874–881.
  32. Roe A.W. Long-term optical imaging of intrinsic signals in anesthetized and awake monkeys. Appl. Opt. 2007. 46 (10): 1872–1880.
  33. Schumikhina S.I., Bondar I.V., Svinov M.M. Dynamics of stability of orientation maps recorded with optical imaging. J. Neuroscience. 2018. 374: 49–60.
  34. Silvani A., Bojic T., Franzini C., Lenzi P., Walker A.M., Grantr D.A., Wild J., Zoccoli G. Sleep-related changes in the regulation of cerebral blood flow in newborn lambs. Sleep. 2004. 27 (1): 36–41.
  35. Sintsov M., Suchkov D., Khazipov R., Minlebaev M. Developmental changes in sensory-evoked optical intrinsic signals in the rat barrel cortex. Front. Cell Neurosci. 2017. 11: 392.
  36. Shumkova V., Sitdikova V., Rechapov I., Leukhin A., Minlebaev M. Effects of urethane and isoflurane on the sensory evoked response and local blood flow in the early postnatal rat somatosensory cortex. Sci. Rep. 2021. 11(1): 9567.
  37. Shumikhina S.I., Bondar I.V., Svinov M.M. Dynamics of stability of orientation maps recorded with optical imaging. Neuroscience. 2018. 374: 49–60.
  38. Takashima I., Kajiwara R. Voltage-sensitive dyes versus intrinsic signal optical imaging: comparison of tactile responses in primary and secondary somatosensory cortices of rats. Brain Sci. 2021. 11 (10): 1294.
  39. Tanaka S., Miyashita M., Wakabayashi N., O’Hashi N., Tani T., Ribot J. Development and reorganization of orientation representation in the cat visual cortex: experience-dependent synaptic rewiring in early life. Front. Neuroinform. 2020. 14: 41.
  40. Tang R., Song Q., Li Y., Zhang R., Cai X., Lu H.D. Curvature-processing domains in primate V4. Elife. 2020. 9: e57502.
  41. Tao J., Wang D., Jin A., Xue J., Yu H. Response of somatosensory cortex following thermal stimuli to dental implants. Neurosci. Lett. 2022. 784: 136750.
  42. Tong Y., Hocke L.M., Frederick B.B. Low frequency syste mic hemodynamic “noise” in resting state BOLD fMRI: characteristics, causes, implications, mitigation strategies and applications. Front. Neurosci. 2019. 13: 787.
  43. Townsend L.B., Jones K.A., Dorsett C.R., Philpot B.D., Smith S.L. Deficits in higher visual area representations in a mouse model of Angelman syndrome. J. Neurodev. Disord. 2020. 12 (1): 28.
  44. Vermeij A., Meel-van den Abeelen A.S.S., Kessels R.P.C., van Beek A.H.E.A., Claassen J.A.H.R. Very-low-frequency oscillations of cerebral hemodynamics and blood pressure are affected by aging and cognitive load. Neuroimage. 2014. 85 Pt 1: 608–615.
  45. Wang D., Tao J., Jin A., Yu H. Tactile sensation of natural teeth and dental implants in the somatosensory cortex. J. Prosthodont. Res. 2022. 66 (2): 272–278.
  46. Xue J., Wang D., Jin A., Tao J., Yu H. Invesigating the role of gingiva in the tactile function of teeth at the cortical level. Neurosci. Lett. 2021. 764: 136198.
  47. Zhang Y., Schriver K.E., Hu J.M., Roe A.W. Spatial frequency representation in V2 and V4 of macaque monkey. Elife. 2023. 12: e81794.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. An example of data processing for the first block of experiments. (a) – image of a visible part of the cortex recorded by means of intrinsic-signal optical imaging where 1 and 2 corresponds to selected Regions of Interests (ROI): 1 – ROI within the neural tissue, 2 – ROI within the blood vessel; (б) – an example of vasomotor oscillations recorded from the neural tissue (left graph) and blood vessel (right graph). Depicted on ordinate is relative change of intrinsic optical signal, in % from its mean value; (в) – spectrogram for vasomotor oscillations recorded from the neural tissue (left graph) and from the blood vessel (right graph). A vertical dashed line separated very-low frequency (VLF) and low-frequency (LF) oscillation ranges; (г) – dynamics of spectrum power for the very-low-frequency (left graph) and the low-frequency (right graph) oscillations recorded from the neural tissue. The dynamics itself is depicted by the dots where each point corresponds to a particular recording session. Thick line is a trend line obtained by means of linear regression. Dashed lines are displaced from the thick line by the squared mean value of real data vs trend differences. The session start time is depicted on abscissa. (д) – change in stimulus contrast during the whole experiment. (е) – non-monotonic changes in the power of low-frequency (LF) oscillations during the whole experiment

Download (350KB)
3. Fig. 2. An example of data processing for the second block of experiments: (а) – an image of the visible part of the cortex recorded by means of intrinsic-signal optical imaging. Designations are the same as in Fig. 1 (a); (б) – examples of vasomotor oscillations recorded at different time sessions. The session start time is at the top of the graphs. The other designations are the same as in Fig. 1 (б); (в) – absolute value of cross-spectral density for pairs of vasomotor oscillations depicted in Fig. (б). A vertical dashed line separated very-low-frequency (at the left) and low-frequency (at-the-right) oscillation ranges; (г) – cross-spectral matrices plotted for very-low-frequency (on the left) and low-frequency (on the right) oscillation ranges. The session start time is depicted on abscissa, another session start time is depicted on ordinate, a color of each point reflects cross-spectrum power for a pair of oscillations related to abcissa and ordinate of that point. Corresponding color code is at the right of both graphs; (д) – dependency of cross-spectral power for two oscillations pairs shown in Fig. (в) and (г) from time lag. A bar height corresponds to the average cross-spectrum power estimated within the 10 minutes interval. Temporary lag value in on the abscissa, cross-spectrum power is on the ordinate; (е) – temporal coherence between records shown above. Time lag is on the abscissa, temporal coherence value is on the ordinate

Download (339KB)
4. Fig. 3. Dependency of the power of vasomotor oscillations on time. (а), (б), (в), (г) – an example of such dependency for an animal shown in Fig. 1. Depicted on (а), (б) are oscillations recorded from the neural tissue, shown on (в), (г) are oscillations revealed from the blood vessel. Very-low-frequency oscillations are shown on Fig. (а), (в) and low-frequency oscillations are shown in Fig. (б), (г). Each black point relates to stand-alone recording session. A thick line is a trend line revealed by means of linear regression. Dashed lines are separated from the thick line by the distance equal to standard deviation of real graph from the linear trend. Session start time is depicted on abscissa; (д) – regression slope statistics for very-low-frequency oscillations in the tissue (1), very-low-frequency oscillations from the vessel (2), low-frequency oscillations from the tissue (3) and low-frequency oscillations from the vessel (4). A box plot diagram is plotted for each of these cases which meaning is the following: box borders relate to 25-th and 75-th percentile, a line at the middle of the box is for median value. Black circles relate to single data points. If there is no data lying outside the whiskers, whisker borders relate to maximum and minimum values. Otherwise, the whisker length is 1.5 times higher that interquantile interval

Download (259KB)
5. Fig. 4. Temporal coherence of vasomotor oscillations revealed under difference time lags. (а) – temporal coherence for the very-low-frequency oscillations in the tissue, (б) – temporal coherence for the very-low-frequency oscillations in the vessel; (в) – temporal coherence for the low-frequency oscillations in the tissue; (г) – temporal coherence for the low-frequency oscillations in the vessel; (д) – comparison of coherence between very-low-frequency and low-frequency oscillations recorded in neural tissue; (е) – comparison of temporal coherence between very-low-frequency and low-frequency oscillations in the blood vessel. On Fig. (а), (б), (в), (г): box plot description is the same as for Fig. 3. Stars are reliability value for temporal coherence for a given time lag vs temporal coherence for 0.42 hours time lag: * – p < 0.004 (corresponds to reliability threshold of 0.05 after Bonferroni correction), ** – p < 0.0004; *** – p < 0.00004. On Fig. (д), (е): each point represents the mean value, whiskers relate to the standard error of mean

Download (236KB)
6. Fig. 5. Change in temporal coherence for vasomotor oscillations related to the change of the time lag: (а) relates to the very-low-frequency oscillations in the tissue; (б) is for very-low-frequency oscillations in the vessel; (в) is for low-frequency oscillations in the tissue; (г) is for low-frequency oscillations in the vessel. Denoted on all figures: a thick line is for regression plotted using medians, other designations are the same as in Fig. 3

Download (260KB)

Copyright (c) 2024 Russian Academy of Sciences