Plastic changes in auditory perception during a course of comprehensive music and singing education by D. E. Ogorodnov: study of event-related potentials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The plastic changes in auditory perception during classes using the complex music and singing education method by D.E. Ogorodnov were studied. A group of 65 children, in addition to the school music program, additionally studied using the Ogorodnov’s method five times a week, and the control group of 29 people took music lessons according to the regular school program. The subjects aged 7–10 years performed the auditory attention test in the ODDBALL paradigm twice with an interval of 4 weeks. To analyze the obtained event-related potentials (ERPs), the blind source separation method was used, based on the approximate joint diagonalization of the covariance matrices calculated for the group ERPs. Decomposition of the group ERPs into hidden components made it possible to isolate the component that reveals the specific effect of training. As our studies have shown, children from the control group show adaptation to auditory stimulation carried out twice during a month. This adaptation was manifested in a significant decrease in the amplitude of the temporal component of the ERP during the repeated examination. In the group of children who studied using the Ogorodnov’s method, such adaptation was not found.

Full Text

Restricted Access

About the authors

D. M. Ogorodnov

Bekhtereva Institute of the Human Brain of the Russian Academy of Sciences

Author for correspondence.
Email: dima.ogorodnov@mail.ru
Russian Federation, Saint Petersburg

S. A. Evdokimov

Bekhtereva Institute of the Human Brain of the Russian Academy of Sciences

Email: dima.ogorodnov@mail.ru
Russian Federation, Saint Petersburg

Yu. D. Kropotov

Bekhtereva Institute of the Human Brain of the Russian Academy of Sciences

Email: dima.ogorodnov@mail.ru
Russian Federation, Saint Petersburg

References

  1. Медведев С.В., Киреев М.В., Коротков А.Д. Организация нейрональных систем обеспечения целенаправленной деятельности человека: новые данные. Физиология человека. 2018. 44 (4): 131–136. doi: 10.1134/S0131164618040094.
  2. Огороднов Д.Е. Музыкально-певческое воспитание детей в общеобразовательной школе. Киев: «Музична Украина», 1981. 167 с.
  3. Огороднов Д.М., Евдокимов С.А., Гапонова В.Е. Исследование изменений потенциалов, связанных с событиями, в ходе музыкально-певческого воспитания по методу Д.Е. Огороднова. В сб.: Первый Национальный конгресс по когнитивным исследованиям, искусственному интеллекту и нейроинформатике. Девятая международная конференция по когнитивной науке: Сборник научных трудов. В 2 чч. Ч. 1. Москва, 2021. С. 453–456.
  4. Albrecht R., Suchodoletz W., Uwer R. The development of auditory evoked dipole source activity from childhood to adulthood. Clin. Neurophysiol. 2000. Dec. 111(12):2268–76. PMID: 11090781. doi: 10.1016/s1388-2457(00)00464-8
  5. Bianco R., Gold B.P., Johnson A.P., Penhune V.B. Music predictability and liking enhance pupil dilation and promote motor learning in non-musicians. 2019. Sci. Rep. 9:17060. doi: 10.1038/s41598-019-53510-w.
  6. Burgoyne A.P., Harris L.J., Hambrick D.Z. Predicting piano skill acquisition in beginners: the role of general intelligence, music aptitude, and mindset. Intelligence. 2019. 76:101383. doi: 10.1016/j.intell.2019.101383.
  7. Cassidy C., Winter P., Cumbia S. An interprofessional early childhood training program: speech-language pathology and music therapy student outcomes and reflections. J. Interprof. Care. 2019. 34 (6). 819–821. https://doi.org/10.1080/13561820.2019.1696761.
  8. Ip C.T., Ganz M., Ozenne B., Sluth L.B., Gram M., Viardot G., l’Hostis P., Danjou P., Knudsen G.M., Christensen S.R. Pre-intervention test-retest reliability of EEG and ERP over four recording intervals. Int. J. Psychophysiol. 2018. Dec. 134:30–43. Epub. 2018. Sep. 22. PMID: 30253197. doi: 10.1016/j.ijpsycho.2018.09.007
  9. Csépe V., Honbolygó F. From psychophysiology to brain imaging: forty-five years MMN history of investigating acoustic change sensitivity. Biol. Futur. 2024. Mar. 75(1):117–128. Epub. 2024. Apr. 12. PMID: 38607546. doi: 10.100 PMID: 11090781. 7/s42977-024-00216-4
  10. Luck S.J., Kappenman E.S. (Eds.) The Oxford handbook of event-related potential components. Oxford: Oxford University Press. 2012. 642 p.
  11. Makeig S., Jung T.P., Bell A.J., Ghahremani D., Sejnowski T.J. Blind separation of auditory event-related brain responses into independent components. Proc. Natl. Acad. Sci. USA. 1997. Sep. 30; 94(20):10979–84. PMID: 9380745; PMCID: PMC23551. doi: 10.1073/pnas.94.20.10979.
  12. Maris E., Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. Journal of neuroscience methods. 2007. 164. 177–90. 10.1016/j.jneumeth.2007.03.024.
  13. Matuszewski J., Kossowski B., Bola Ł., Banaszkiewicz A., Papli´nska M., Gyger L. et al. Brain plasticity dynamics during tactile Braille learning in sighted subjects: multi-contrast MRI approach. NeuroImage. 2021. 227:117613. doi: 10.1016/j.neuroimage.2020.117613.
  14. Münte T.F., Altenmüller E., Jäncke L. The musician’s brain as a model of neuroplasticity. Nat. Rev. Neurosci. 2002. Jun. 3(6):473–8. PMID: 12042882. doi: 10.1038/nrn843
  15. Olszewska A.M., Gaca M., Herman A.M., Jednoróg K., Marchewka A. How Musical Training Shapes the Adult Brain: Predispositions and Neuroplasticity. Front. Neurosci. 2021. Mar. 10; 15:630829. PMID: 33776638; PMCID: PMC7987793. doi: 10.3389/fnins.2021.630829
  16. Pantev C., Lappe C., Herholz S.C., Trainor L. Auditory-somatosensory integration and cortical plasticity in musical training. Ann. NY Acad. Sci. 2009. Jul. 1169:143–50. PMID: 19673770. doi: 10.1111/j.1749-6632.2009.04588.x
  17. Pascual-Marqui R. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp. Clin. Pharmacol. 2002. 24. Suppl D: 5–12. PMID: 12575463.
  18. Penhune V.B. “Musical expertise and brain structure: the causes and consequences of training” in The Oxford Handbook of Music and the Brain, eds M. H. Thaut, and D. A. Hodges (Oxford: Oxford University Press). 2019. 417–438. doi: 10.1093/oxfordhb/9780198804123.013.17.
  19. Pernet C.R., Latinus M., Nichols T.E., Rousselet G.A. Cluster-based computational methods for mass univariate analyses of event-related brain potentials/fields: A simulation study. J. Neurosci Methods. 2015. Jul. 30. 250:85–93. Epub. 2014. Aug. 13. PMID: 25128255; PMCID: PMC4510917. doi: 10.1016/j.jneumeth.2014.08.003
  20. Ponomarev V.A., Kropotov J.D. Second Order Blind Identification of Event Related Potentials Sources. Brain Topogr. 2023. 36. 797–815. https://doi.org/10.1007/s10548-023-00998-1.
  21. Proverbio A.M., Russo F. Multimodal recognition of emotions in music and language. Psychol. Music. January 2022. Vol. 50. Issue 1. Pр. 54–68. http://dx.doi.org/10.1177/0305735620978697.
  22. Räikkönen K., Birkás E., Horváth J., Gervai J., Winkler I. Test-retest reliability of auditory ERP components in healthy 6-year-old children. Neuroreport. 2003. Nov. 14;14(16):2121–5. PMID: 14600509. doi: 10.1097/00001756-200311140-00022
  23. Ruhnau P., Herrmann B., Maess B., Schröger E. Maturation of obligatory auditory responses and their neural sources: evidence from EEG and MEG. Neuroimage. 2011. Sep. 15; 58 (2):630–9. Epub. 2011. Jun. 25. PMID: 21726651. doi: 10.1016/j.neuroimage.2011.06.050
  24. Schellenberg E.G. Correlation = causation? Music training, psychology, and neuroscience. Psychol. Aesthet. Creat. Arts. 2020. 14, 475–480.
  25. Tomé D., Barbosa F., Nowak K., Marques-Teixeira J. The development of the N1 and N2 components in auditory oddball paradigms: a systematic review with narrative analysis and suggested normative values. J. Neural. Transm. (Vienna). 2015. Mar. 122(3):375–391. Epub. 2014. Jun. 25. PMID: 24961573. doi: 10.1007/s00702-014-1258-3
  26. Vigario R. Extraction of ocular artifacts from EEG using independent component analysis. Electroenceph. Clin. Neurophysiol. 1997. V. 103. № 3. P. 395.
  27. Wisniewski M.G., Joyner C.N., Zakrzewski A.C., Makeig S. Finding tau rhythms in EEG: An independent component analysis approach. Hum. Brain Mapp. 2024. Feb. 1; 45(2):e26572. PMID: 38339905; PMCID: PMC10823759. doi: 10.1002/hbm.26572
  28. Zaatar M.T., Alhakim K., Enayeh M., Tamer R. The transformative power of music: Insights into neuroplasticity, health, and disease. Brain Behav. Immun. Health. 2023. Dec. 12;35:100716. PMID: 38178844; PMCID: PMC10765015. doi: 10.1016/j.bbih.2023.100716

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. ERP averaged over all subjects. Gray lines are ERP for short sound stimuli, black lines are PSS for long sound stimuli. The topographies of the N2 and P3 components are shown below the graph.

Download (206KB)
3. Fig. 2. Latent components of the ERP: (a) – the first, (б) – the second, (в) – the third, individual and averaged over all subjects. The ERP to a long stimulus is the red line, to a short stimulus – the green. From left to right: ERP localization according to sLORETA, component topography, rectangular rasters of individual components (each horizontal line on the raster represents an individual ERP, the color of which codes the amplitude of this ERP) and ERP graphs for short (green lines) and long stimuli (red lines). The following ERP records were used to obtain the decomposition: the 1st and 2nd records for the “method” and “control” groups. Individual ERPs in the rasters are arranged in order of increasing reaction time (from top to bottom), the reaction time to the deviant stimulus is shown in black. On the right side of the raster, the ERP condition is indicated by color: a long signal is a red vertical stripe, a short one is a green vertical stripe.

Download (374KB)
4. Fig. 3. Dynamics of the first (temporal) hidden component in response to short stimuli (б, в) and long stimuli (г, д) depending on the group (“Method”, “Control”) and the condition (“before”, “after”). The topography of the component is shown (a). Legend: thin lines – “Method”, thick lines – “Control”. The “before” condition is a gray line, the “after” condition is a black line. The dotted line is the difference curve for the “after” minus “before” components for the “Control” group. The statistically significant cluster (p < 0.05) for this difference curve (black fill) is below the graphs. The gray fill (б, г) shows the time interval of the half-wave selected for the statistical analysis (в, д). For these average values of the selected intervals, the graphs (в, д) show the values of the 95% confidence intervals for the average amplitudes of the components.

Download (133KB)

Copyright (c) 2025 Russian Academy of Sciences