Influence of external factors on the success of transmissing messages during the monitoring of wild reindeer movements using the “Argos” satellite system (Rangifer tarandus)
- Authors: Mamontov V.N.1, Salman A.L.2
-
Affiliations:
- N. P. Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences
- “ES-PAS”
- Issue: Vol 103, No 9 (2024)
- Pages: 103-115
- Section: МЕТОДИКА ЗООЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ
- URL: https://kld-journal.fedlab.ru/0044-5134/article/view/654251
- DOI: https://doi.org/10.31857/S0044513424090089
- EDN: https://elibrary.ru/triqvu
- ID: 654251
Cite item
Abstract
Currently, satellite telemetry is increasingly in use in environmental research. As a result, researchers obtain a large amount of data on the use of space by animals. However, despite the perfection of modern satellite navigation and data transmission systems, reports on the positions of animals are extremely uneven. We consider here the main technical and natural factors that may influence the success of spacecraft in the “Argos” satellite system receiving messages emitted by radio beacons installed on animals. Among the natural factors when an animal is under the forest canopy, the greatest influence has been established to be exerted by the closure of tree crowns, which can be offset by the abundance of snow in the crowns after heavy snowfalls. Dense clouds have a weaker effect. Of the technical factors associated with the characteristics of flights of satellites of the “Argos” system, the success of receiving messages is influenced, first of all, by the maximum angle of elevation of the satellite above the horizon and the intensity of flights of satellites with a maximum angle of elevation above the horizon of more than 10° per unit time. This is due to the high unevenness of message receipt. At night and in the afternoon, due to a reduction in the number of satellite flights and a decrease in the altitude of their trajectories, the success of reception may decrease to 3% of the number of transmitted messages.
Full Text

About the authors
V. N. Mamontov
N. P. Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences
Author for correspondence.
Email: mamont1965@list.ru
Russian Federation, Arkhangelsk, 163020
A. L. Salman
“ES-PAS”
Email: a.salman@es-pas.com
Russian Federation, Moscow, 125171
References
- Amstrup S. C., Mcdonald T. L., Durner G. M., 2004. Using satellite radiotelemetry data to delineate and manage wildlife populations // Wildlife Society Bulletin. V. 32. № 3. P. 661–679. https://doi.org/10.2193/0091-7648(2004)032[0661:USRDTD]2.0.CO;2
- Cagnacci F., Boitani L., Powell R. A., Boyce M. S., 2010. Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges // Philosophical Transactions of the Royal Society B. Biol. Sci. V. 365. № 1550. P. 2157–2162. https://doi.org/10.1098/rstb.2010.0107
- Coxen Ch.L., Frey J. K., Carleton S. A., Collins D. P., 2017. Species distribution models for a migratory bird based on citizen science and satellite tracking data // Glo-bal Ecology and Conservation. V. 11. P. 298–311. https://doi.org/10.1016/j.gecco.2017.08.001
- Csermak-Jr A.C., de Araujo G. R., Pizzutto C. S., de Deco-Souza T., Jorge-Neto P.N., 2022. GPS collars as a tool to uncover environmental crimes in Brazil: The jaguar as a sentinel // Animal Conservation. V. 26. № 2. P. 137–275. https://doi.org/10.1111/acv.12826
- De Groeve J., Cagnacci F., Ranc N., Bonnot N. C., Gehr B., Heurich M., Hewison A. J.M., Kroeschel M., Linnell J. D., Morellet N., Mysterud A., Sandfort R., Van De Weghe N., 2020. Individual movement-sequence analysis method (IM-SAM): characterizing spatio-temporal patterns of animal habitat use across landscapes // International Journal of Geographical InformationScience. V. 34. P. 1530–1551. https://doi.org/10.1080/13658816.2019.1594822
- DeCesare N.J., Squires J. R., Kolbe J. A., 2005. Effect of forest canopy on GPS-based movement data // Wildlife Society Bulletin. V. 33. № 3. P. 935–941. https://doi.org/10.2193/0091-7648(2005)33[935:EOFCOG]2.0.CO;2
- Fernandez-Rodriguez P., Carrasco R., Moro J., Garrido-Carretero M.S., Azorit C., 2023. Working with GNSS collar data. The importance of pre-analysis when setting the sampling interval // Ecological Informatics. V. 77. Ar. 102219. https://doi.org/10.1016/J.ECOINF.2023.102219
- Forin-Wiart M.-A., Hubert P., Sirguey P., Poulle M.-L., 2015. Performance and accuracy of lightweight and low-cost GPS data loggers according to antenna positions, fix intervals, habitats and animal movements // PLoS One. V. 10. № 6. Ar. 0129271. https://doi.org/10.1371/journal.pone.0129271
- Frair J. L., Fieberg J., Hebblewhite M., Cagnacci F., DeCesare N.J., Pedrotti L., 2010. Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data // Philosophical Transactions of the Royal Society B: Biological Sciences. V. 365. № 1550. P. 2187–2200. https://doi.org/10.1098/rstb.2010.0084
- Garcia-Jimenez R., Margalida A., Perez-Garcia J.M., 2020. Influence of individual biological traits on GPS fix-loss errors in wild bird tracking // Scientific Reports. V. 10. Ar. 19621.
- https://doi.org/10.1038/s41598-020-76455-x
- Hebblewhite M., Haydon D. T., 2010. Distinguishing technology from biology: A critical review of the use of GPS telemetry data in ecology // Philosophical Transactions of the Royal Society B: Biological Sciences. V. 365. № 1550. P. 2303–2312. https://doi.org/10.1098/rstb.2010.0087
- Leonard J. P., Tewes M. E., Lombardi J. V., Wester D. W., Campbell T. A., 2020. Effects of sun angle, lunar illumination, and diurnal temperature on temporal movement rates of sympatric ocelots and bobcats in South Texas // PLoS ONE. V. 15. № 4. Ar. e0231732. https://doi.org/10.1371/journal.pone.0231732
- Lombardi J. V., Perotto-Baldivieso H.L., Hewitt D. G., Scognamillo D. G., Campbell T. A., Tewes M. E., 2022. Assessment of appropriate species-specific time intervals to integrate GPS telemetry data in ecological niche models // Ecological Informatics. V. 70. Ar. 101701. https://doi.org/10.1016/j.ecoinf.2022.101701
- Lombardi J. V., Perotto-Baldivieso H.L., Sergeyev M., Veals A. M., Schofield L., Young J. H., Tewes M. E., 2021. Landscape structure of woody cover patches for endangered ocelots in southern Texas // Remote Sensing. V. 13. № 19. Ar. 4001. https://doi.org/10.3390/rs13194001
- Oeser J., 2022. Leveraging big satellite image and animal tracking data for characterizing large mammal habitats. Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium. Berlin: Humboldt-Universität zu Berlin – Geographisches Institut. 179 p.
- Sager-Fradkin K.A., Jenkins K. J., Hoffman R. A., Happe P. J., Beecham J. J., Wright R. G., 2007. Fix Success and Accuracy of Global Positioning System Collars in Old-Growth Temperate Coniferous Forests // Journal of Wildlife Management. V. 71. № 4. P. 1298–1308. https://doi.org/10.2193/2006-367
- Street G. M., Potts J. R., Börger L., Beasley J. C., Demarais S., Fryxell J. M., McLoughlin P.D., Monteith K. L., Prokopenko C. M., Ribeiro M. C., Rodgers A. R., Strickland B. K., Van Beest F. M., Bernasconi D. A., Beumer L. T., Dharmarajan G., Dwinnell S. P., Keiter D. A., Keuroghlian A., Newediuk L. J., Oshima J. E.F., Rhodes Jr. O., Schlichting P. E., Schmidt N. M., Wal E. V., 2021. Solving the sample size problem for resource selection functions // Methods in Ecology and Evoluton. V. 12. № 12. P. 2421–2431. https://doi.org/10.1111/2041-210X.13701
- Walton Z., Samelius G., Odden M., Willebrand T., 2018. Long-distance dispersal in red foxes Vulpes vulpes revealed by GPS tracking // European Journal of Wildlife Research. V. 64. Ar. 64 https://doi.org/10.1007/s10344-018-1223-9
- Webb S. L., Dzialak M. R., Mudd J. P., Winstead J. B., 2013. Developing spatially-explicit weighting factors to account for bias associated with missed GPS fixes in resource selection studies // Wildlife Biology. V. 19. № 3. P. 257–273. https://doi.org/10.2981/12-038
Supplementary files
