Cortisol concentration in hair of the Baikal seal (Pusa sibirica Gmelin 1788, Carnivora, Phocidae): the effects of sex, age, and the dynamics of ice destruction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Measuring hair cortisol concentrations is a widespread method of hormonal research in natural populations. In particular, it has increasingly been used for assessing the chronic physiological stress over long time periods. This study showed for the first time the experience of using hair of Baikal seals to examine their hormonal status. We collected hair samples from live Baikal seals captured during summer expeditions to the Ushkany Islands, Lake Baikal in 2019 and 2021. Age differences in hair cortisol concentration were found: hair cortisol levels were higher among the young seals and declined with age. We suppose this may be related to different extents of nutritional stress, hunting success and social factors on summer rookeries. There was no sex effect on hair cortisol in young animals. We observed that hair cortisol concentrations were higher in young animals captured in 2019 compared to seals taken in 2021, with no differences in ice conditions between these years found.

Full Text

Restricted Access

About the authors

P. Yu. Shibanova

A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Author for correspondence.
Email: polina_shibanova@mail.ru
Russian Federation, Moscow, 119071

M. A. Solovyeva

A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: polina_shibanova@mail.ru
Russian Federation, Moscow, 119071

P. S. Zhuravleva

A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: polina_shibanova@mail.ru
Russian Federation, Moscow, 119071

D. M. Glazov

A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: polina_shibanova@mail.ru
Russian Federation, Moscow, 119071

V. V. Rozhnov

A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: polina_shibanova@mail.ru
Russian Federation, Moscow, 119071

S. V. Naidenko

A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: polina_shibanova@mail.ru
Russian Federation, Moscow, 119071

References

  1. Болтнев Е. А., 2023. Управление запасами байкальской нерпы в современных условиях // I Международная научно-практическая конференция “Рыбохозяйственный комплекс России: проблемы и перспективы развития (28–29 марта 2023 г.). С. 61–66.
  2. Пастухов В. Д., 1993. Нерпа Байкала: биологические основы рационального использования и охраны ресурсов. Новосибирск: Наука. 271 с.
  3. Петров Е. А., Егорова Л. И., 1998. Современное состояние популяции байкальской нерпы (Pusa sibirica, Pinnipedia, Phocidae): питание и упитанность // Зоологический журнал. Т. 77. № 5. С. 593–600.
  4. Петров Е. А., Купчинский А. Б., Фиалков В. А., Бадардинов А. А., 2021. Значение береговых лежбищ в жизни байкальской нерпы (Pusa sibirica Gmelin 1788, Pinnipedia). 3. Функционирование лежбищ байкальской нерпы на острове Тонкий (Ушканьи острова, оз. Байкал) по материалам видеонаблюдений // Зоологический журнал. Т. 100. № 7. С. 823–840.
  5. Петров Е. А., Купчинский А. Б., Фиалков В. А., Бадардинов А. А., 2021а. Значение береговых лежбищ в жизни байкальской нерпы (Pusa sibirica Gmelin 1788, Pinnipedia). 4. Поведение нерпы на береговых лежбищах на острове Тонкий (Ушканьи острова, оз. Байкал) по материалам видеонаблюдений // Зоологический журнал. Т. 100. № 10. С. 1175–1194.
  6. Ткачев В. В., Варнавский А. В., Бобков А. И., Тугарин А. И., 2016. Современное состояние популяции байкальской нерпы (Pusa sibirica Gm.) // Вестник рыбохозяйственной науки. Т. 3. № 1. С. 53–63.
  7. Acker M., Mastromonaco G., Schulte-Hostedde A.I., 2018. The effects of body region, season and external arsenic application on hair cortisol concentration // Conservation Physiology. V. 6. № 1. P. 1–9.
  8. Ashwell-Erickson S., Fay F. H., Elsner R., Wartzok D., 1986. Metabolic and hormonal correlates of molting and regeneration of pelage in Alaskan harbor and spotted seals (Phoca vitulina and Phoca largha) // Canadian Journal of Zoology. V. 64. № 5. P. 1086–1094.
  9. Bergendahl M., Vance M. L., Iranmanesh A., Thorner M. O., Veldhuis J. D., 1996. Fasting as a metabolic stress paradigm selectively amplifies cortisol secretory burst mass and delays the time of maximal nyctohemeral cortisol concentrations in healthy men // Journal of Clinical Endocrinology and Metabolism. V. 81. № 2. P. 692–699.
  10. Burnett T. A., Madureira A. M.L., Silper B. F., Nadalin A., Tahmasbi A., Veira D. M., Cerri R. L.A., 2014. Short communication: Factors affecting hair cortisol concentrations in lactating dairy cows // Journal of Dairy Science. V. 97. № 12. P. 7685–7690.
  11. Burns J. M., 1999. The development of diving behavior in juvenile Weddell seals: pushing physiological limits in order to survive // Canadian Journal of Zoology. V. 77. № 5. P. 737–747.
  12. Comin A., Veronesi M. C., Montillo M., Faustini M., Valentini S., Cairoli F., Prandi A., 2012. Hair cortisol level as a retrospective marker of hypothalamic-pituitary-adrenal axis activity in horse foals // The Veterinary Journal. V. 194. P. 131–132.
  13. Ferguson S. H., Young B. G., Yurkowski D. J., Anderson R., Willing C., Nielsen O., 2017. Demographic, ecological, and physiological responses of ringed seals to an abrupt decline in sea ice availability// Peer J. V. 5. № 2957.
  14. González-de-la-Vara M. del R., Valdez R. A., Lemus-Ramirez V., Vázquez-Chagoyán J.C., Villa-Godoy A., Romano M. C., 2011. Effects of adrenocorticotropic hormone challenge and age on hair cortisol concentrations in dairy cattle // Canadian Journal of Veterinary Research. V. 75. P. 216–221.
  15. Gundlach N., Krumbholz A., Siebert U., 2014. Hair cortisol as a parameter for stress assessment in harbor seals// 28th annual conference of the European Cetacean Society, Liège, Belgium, 5th – 9th April 2014.
  16. Heimbürge S. E., Otten W., 2019. The use of hair cortisol for the assessment of stress in animals // General and Comparative Endocrinology. V. 270. P. 10–17.
  17. Hunt K. E., Stimmelmayr R., George C., Hanns C., Suydam R., Brower H., Rolland R. M., 2014. Baleen hormones: A novel tool for retrospective assessment of stress and reproduction in bowhead whales (Balaena mysticetus) // Conservation Physiology. V. 2. № 1. P. 1–12.
  18. Jensen T. L., Kiersgaard M. K., Sørensen D. B., Mikkelsen L. F., 2013. Fasting of mice: a review // Laboratory Animals. V. 47. № 4. P. 225–240.
  19. Karpovich S. A., Horstmann L. A., Polasek L. K., 2020. Validation of a novel method to create temporal records of hormone concentrations from the claws of ringed and bearded seals // Conservation Physiology. V. 8. № 1. P. 1–11.
  20. Keogh M. J., Gastaldi A., Charapata P., Melin S., Fadely B. S., 2020. Stress-related and reproductive hormones in hair from three north Pacific otariid species: Steller sea lions, California sea lions and northern fur seals // Conservation Physiology. V. 8. № 1. P. 1–13.
  21. Kershaw J. L., Hall A. J., 2016. Seasonal variation in harbour seal (Phoca vitulina) blubber cortisol – A novel indicator of physiological state? // Scientific Reports. V. 6. № 1.
  22. Laudenslager M. L., Jorgensen M. J., Fairbanks L. A., 2012. Developmental patterns of hair cortisol in male and female nonhuman primates: lower hair cortisol levels in vervet males emerge at puberty // Psychoneuroendocrinology. V. 37. P. 1736–1739.
  23. Mastromonaco G. F., Gunn K., McCurdy-Adams H., Edwards D. B., Schulte-Hostedde A.I., 2014. Validation and use of hair cortisol as a measure of chronic stress in eastern chipmunks (Tamias striatus) // Conservation Physiology. V. 2. № 1. P. 1–12.
  24. McCormick C.M., Mathews I. Z., 2007. HPA function in adolescence: role of sex hormones in its regulation and the enduring consequences of exposure to stressors // Pharmacology, Biochemistry & Behavior. V. 86. № 2. P. 220–233.
  25. McLaren I.A., 1958. The biology of the ringed seal (Phoca hispida Schreber) in the eastern Canadian Arctic// Bulletin no. 118. Fisheries Research Board of Canada, Ottawa.
  26. Meise K., Von Engelhardt N., Forcada J., Hoffman J. I., 2016. Offspring hormones reflect the maternal prenatal social environment: Potential for foetal programming? // PLoS ONE. V. 11. № 1. P. 1–17.
  27. Meyer J. S., Novak M. A., 2012. Minireview: Hair cortisol: A novel biomarker of hypothalamic-pituitary-adrenocortical activity // Endocrinology. V. 153. № 9. P. 4120–4127.
  28. Naidenko S. V., Alekseeva G. S., Klyuchnikova P. S., Erofeeva M. N., 2022. Application of felid hair for non-invasive tracking of animal reproductive status and adrenal activity // Animals V. 12. № 2792.
  29. Ortiz R. M., Wade C. E., Ortiz C. L., 2001. Effects of prolonged fasting on plasma cortisol and TH in postweaned northern elephant seal pups // American Journal of Physiology – Regulatory Integrative Comparative Physiology. V. 280. P. 790–795.
  30. R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL.
  31. Rose A. J., Herzig S., 2013. Metabolic control through glucocorticoid hormones: An update // Molecular and Cellular Endocrinology. V. 380. № 1–2. P. 65–78.
  32. Ryg M., Oritsland N. A., 1991. Estimates of energy expenditure and energy consumption of ringed seals (Phoca hispida ) throughout the year// Polar Research. V. 10. P. 595–602.
  33. Sapolsky R. M., Romero L. M., Munck A. U., 2000. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions// Endocrine Reviews. V. 21. № 1. P. 55–89.
  34. Sheriff M. J., Dantzer B., Delehanty B., Palme R., Boonstra R., 2011. Measuring stress in wildlife: techniques for quantifying glucocorticoids // Oecologia. V. 166. № 4. P. 869–887.
  35. Stewart B. S., Petrov E. A., Baranov E. A., Ivanov A. T.M., 1996. Seasonal movements and dive patterns of juvenile Baikal seals, Phoca sibirica // Marine Mammal Science. V. 12. № 4. P. 528–542.
  36. Terwissen C. V., Mastromonaco G. F., Murray D. L., 2013. Influence of adrenocorticotrophin hormone challenge and external factors (age, sex, and body region) on hair cortisol concentration in Canada lynx (Lynx canadensis) // General and Comparative Endocrinology. V. 194. P. 162–167.
  37. Thometz N. M., Hermann-Sorensen H., Russell B., Rosen D. A.S., Reichmuth C., 2021. Molting strategies of Arctic seals drive annual patterns in metabolism // Conservation Physiology. V. 9. № 1.
  38. Watanabe Y., Baranov E. A., Sato K., Naito Y., Miyazaki N., 2004. Foraging tactics of Baikal seals differ between day and night // Marine Ecology progress series. V. 279. P. 283–289.
  39. Webb E., Thomson S., Nelson A., White C., Koren G., Rieder M., Van Uum S., 2010. Assessing individual syste-mic stress through cortisol analysis of archaeological hair // Journal of Archaeological Science. V. 37. № 4. P. 807–812.
  40. Wickham H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
  41. Worthy G. A.J., Morris P. A., Costa D. P., Le Boeuf B. J., 1992. Moult energetics of the northern elephant seal (Mirounga angustirostris) // Journal of Zoology (Lond). V. 227. P. 257–265.
  42. Yamanashi Y., Teramoto M., Morimura N., Hirata S., Suzuki J., Hayashi M., Kinoshita K., Murayama M., Idani G., 2016. Analysis of hair cortisol levels in captive chimpanzees: Effect of various methods on cortisol stability and variability // MethodsX. V. 3. P. 110–117.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Hair collection from Baikal seal

Download (275KB)
3. Fig. 2. Ice distribution on Lake Baikal in spring 2021 based on satellite images (Modis device, Terra satellite), http://sputnik.irk.ru/

Download (217KB)
4. Fig. 3. Cortisol concentration in seal hair in the summer 2021 sample (Ushkany Islands). The median is indicated, 1st and 3rd quartiles are the boundaries of the “box”, the maximum and minimum are the boundaries of the “whiskers”.

Download (60KB)
5. Fig. 4. Cortisol concentration in the hair of young seals caught in the summers of 2019 and 2021 on the Ushkany Islands. The median is indicated, the 1st and 3rd quartiles are the boundaries of the “box”, the maximum and minimum are the boundaries of the “whiskers”.

Download (50KB)

Copyright (c) 2024 Russian Academy of Sciences