Statistical analysis of flux enhancements of energetic electrons in the low-latitudinal ionosphere according to the data from the NOAA/POES and MetOp satellites from 1998 to 2022 years

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The intense precipitation of energetic electrons from the Earth’s radiation belt (ERB) is one of the most important sources of ionization in the ionosphere and atmosphere. We have carried out a large-scale statistical analysis of data from continuous low-orbit satellite observations of solar-cycle variations in the flux enhancements of the ERB electrons with energy >30 keV at an altitude of 850 km, acquired from the NOAA/POES and MetOp fleet in the interval from 1998 to 2022. We have found and described basic features of artificial failures in the spaceborn database with high-time resolution measurements in the interval from 2014 to 2022. Data correction was done. It was shown that the annual number of days with the electron flux enhancements increases rapidly within three years after the solar-cycle maximum and reaches its greatest value near the middle of the declining phase of solar activity. Then the event occurrence begins to decrease within an 8-year interval, including the minimum, rising and maximum phases of the solar cycle. The minimum occurrence of the events is achieved at minimum solar activity.

Full Text

Restricted Access

About the authors

M. G. Golubkov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: golubkov@chph.ras.ru
Russian Federation, Moscow

A. V. Suvorova

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

Email: golubkov@chph.ras.ru
Russian Federation, Moscow

A. V. Dmitriev

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

Email: golubkov@chph.ras.ru
Russian Federation, Moscow

G. V. Golubkov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; National Research Center “Kurchatov Institute”

Email: golubkov@chph.ras.ru
Russian Federation, Moscow; Moscow

References

  1. Golubkov G.V., Dmitriev A.V., Suvorova A.V., Golubkov M.G. // Russ. J. Phys. Chem. B 2019. V. 13. P. 874. https://doi.org/10.1134/S1990793119050166
  2. Frolov V.L., Kulikov Y.Y., Troitsky A.V. // Russ. J. Phys. Chem. B 2022. V. 16. P. 965. https://doi.org/10.1134/S1990793122050190
  3. Golubkov G.V., Berlin A.A., Dyakov Y.A. et al. // Russ. J. Phys. Chem. B 2023. V. 17. P. 1216. https://doi.org/10.1134/S1990793123050214
  4. Klimenko M.V., Klimenko V.V., Sukhodolov T.V. et al. // Adv. Space Res. 2023. V. 71. P. 4576. https://doi.org/10.1016/j.asr.2023.01.012
  5. Bakhmetieva N.V., Zhemyakov I.N. // Russ. J. Phys. Chem. B 2022. V. 16. P. 990. https://doi.org/10.1134/S1990793122050177
  6. Suvorova A.V., Tsai L.C., Dmitriev A.V. // Planet. Space Sci. 2012. V. 60. P. 363. https://doi.org/10.1016/j.pss.2011.11.001
  7. Suvorova A.V., Dmitriev A.V., Tsai L.C. et al. // J. Geophys. Res.: Space Phys. 2013. V. 118. P. 4672. https://doi.org/10.1002/jgra.50439
  8. Suvorova A.V., Huang C.M., Dmitriev A.V. et al. // J. Geophys. Res.: Space Phys. 2016. V. 121. P. 5880.https://doi.org/10.1002/2016JA022622
  9. Dmitriev A.V., Suvorova A.V., Klimenko M.V. et al. // J. Geophys. Res.: Space Phys. 2017. V. 122. P. 2398. https://doi.org/10.1002/2016JA023260
  10. Golubkov M.G., Suvorova A.V., Dmitriev A.V., Golubkov G.V. // Russ. J. Phys. Chem. B 2020. V. 14. P. 873. https://doi.org/10.1134/S1990793120050206
  11. Suvorova A.V., Huang C.M., Matsumoto H. et al. // J. Geophys. Res.: Space Phys. 2014. V. 119. P. 9283. https://doi.org/10.1002/2014JA020349
  12. Evans D.S., Greer M.S. NOAA Technical Memorandum, Ver. 1.4. Space Environ. Center, Boulder, 2004.
  13. NOAA/POES Space Environment Monitor [Electronic resource]; https://www.ngdc.noaa.gov/stp/satellite/poes/
  14. Suvorova A.V., Dmitriev A.V. In: Cyclonic and Geomagnetic Storms: Predicting Factors, Formation and Environmental Impacts, Ed. by V.P. Banks. Nova Sci., New York, 2015. P. 19.
  15. Suvorova A.V., Geophys J. // Res.: Space Phys. 2017. V. 122. P. 12274. https://doi.org/10.1002/2017JA024556
  16. Dmitriev A.V., Suvorova A.V., Ghosh S., Golubkov G.V., Golubkov M.G. // Atmosphere. 2022. V. 13. P. 322. https://doi.org/10.3390/atmos13020322
  17. Suvorova A.V. // Universe. 2023. V. 9. P. 374. https://doi.org/10.3390/universe9080374
  18. Golubkov M.G., Dmitriev A.V., Suvorova A.V., Golubkov G.V. // Russ. J. Phys. Chem. B 2022. V. 16. P. 537. https://doi.org/10.1134/S199079312203006X
  19. Selesnick R.S., Su Y.J., Sauvaud J.A., Geophys J. // Res.: Space Phys. 2019. V. 124. P. 5421. https://doi.org/10.1029/2019JA026718
  20. Suvorova A.V., Dmitriev A.V., Parkhomov V.A. // Ann. Geophys. 2019. V. 37. P. 1223. https://doi.org/10.5194/angeo-37-1223-2019
  21. Dmitriev A.V., Suvorova A.V., Veselovsky I.S. In: Handbook on Solar Wind: Effects, Dynamics and Interactions, Ed. by H.E. Johannson. Nova Sci., New York, 2009. P. 81. https://doi.org/10.48550/arXiv.1301.2929
  22. Borovsky J.E., Yakymenko K. // J. Geophys. Res.: Space Phys. 2017. V. 122. P. 2973. https://doi.org/10.1002/2016JA023625
  23. Ginzburg E.A., Zinkina M.D., Pisanko Y.V. // Geomagn. Aeron. 2023. V. 63. P. 735. https://doi.org/10.1134/S0016793223600546

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Maps of the spatial distribution of maximum intensities of electron fluxes with energy Ee> 30 keV, precipitating from the ERB, constructed in geographic coordinates based on measurements by NOAA/POES and MetOp satellites at an altitude of 850 km for one year: a – 2014; b – 2022. The magnetic equator is shown as a black curve.

Download (494KB)
3. Fig. 2. An example of determining useful and failure signals based on satellite measurement data: a – a 3-day map of the spatial distribution of maximum intensities of electron fluxes with energy Ee > 30 keV; b – time profile of the useful signal; c – time profile of the failure signal. The color scale of intensities is similar to the scale in Fig. 1.

Download (407KB)
4. Fig. 3. An example of superposition of electronic unit failure signals on a real signal from a detector, recording an increase in the intensity of the electron flow with energy Ee > 30 keV in the quasi-capture zone.

Download (108KB)
5. Fig. 4. Example of time sweeps for failure intervals recorded by the MetOp-A satellite’s semiconductor detectors measuring the intensities of charged particle fluxes with energies Ee > 30 keV: a – electron flux, detector orientation toward the zenith (q = 0°); b – electron flux, detector orientation q = 90°; c – proton flux, detector orientation q = 0°.

Download (180KB)
6. Fig. 5. Example of time sweeps for the glitch intervals recorded by the semiconductor and scintillation detectors of the MetOp-A satellite, measuring the proton flux intensities: a – Ep > 6 MeV, detector orientation q = 0°; b – Ep > 6 MeV, detector orientation q = 90°; c – Ep > 25 MeV, omnidirectional flux.

Download (154KB)
7. Fig. 6. Statistical analysis of solar-cyclic variation of energetic electron fluxes based on data from low-orbit NOAA/POES and MetOp satellites for the period from 1998 to 2022: dashed curve – average annual frequencies of increase in the intensity of electron flux with Ee > 30 keV in the equatorial ionosphere; solid curve – average annual number of sunspots (Wolf number), averaged with a step of 1 month.

Download (105KB)

Copyright (c) 2024 Russian Academy of Sciences