Physicochemical properties of disperse-filled ethylene-octene copolymer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article is aimed at developing innovations in the field of hybrid polymer nanomaterials and investigating their structural, thermodynamic, and physico-mechanical properties. Filling the ethylene-octene copolymer with Ni nanoparticles as well as basalt scales increases the elasticity of the composite by a 25% and also causes an increase in strength by a 15%. Obtained results open possibility to evaluate influence of chemical nature, sizes and content of different kinds of fillers for improvement thermostability and elasticity of the new hybrid polymer nanomaterials.

Full Text

Restricted Access

About the authors

V. V. Myasoedova

Federal Research Center of Chemical Physics named after N.N. Semenov, Russian Academy of Sciences

Author for correspondence.
Email: veravm777@gmail.com
Russian Federation, Moscow

D. A. Golobokov

University of Science and Technology “MISIS”

Email: veravm777@gmail.com
Russian Federation, Moscow

References

  1. Trakhtenberg L.I., Ikim M.I., Ilegbusi O.J. et al. // Chemosensors. 2023. V. 11. № 6. P. 320. https://doi.org/10.3390/ chemosensors11060320
  2. Kozhushner M.A., Trakhtenberg L.I., Bodneva V.L. et al. // J. Phys. Chem. C. 2014. V. 118. № 21. P. 11440. https://doi.org/10.1021/jp501989k
  3. Trakhtenberg L.I., Gerasimov G.N., Grigor’ev E.I. // Russ. J. Phys. Chem. A. 1999. V. 73. P. 209.
  4. Zhukov A.M., Solodilov V.I., Tretyakov I.V. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 926. https://doi.org/10.1134/S199079312205013X
  5. Guymon G.G., Malakooti M.H. // J. Polym. Sci. 2022. V. 60. № 8. P. 1300. https://doi.org/10.1002/pol.20210867
  6. Nesmelov A.A., Zavyalov S.A., Malakhov S.N. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 826.
  7. Trzepieci’nski T., Najm S.M., Sbayti M. et al. // J. Compos. Sci. 2021. V. 5. № 8. P. 217. https://doi.org/10.3390/jcs5080217
  8. Tran V.V., Nu T.T.V., Jung H.-R. et al. // Polymers. 2021. V. 13. № 18. P. 3031. https://doi.org/10.3390/polym13183031
  9. Aloev V.Z., Zhirikova Z.M., Tarchokova M.A. // ChemChemTech. 2020. V. 63. P. 81. https://doi.org/10.6060/ivkkt.20206304.6158
  10. Li Z., Wu W., Chen H. et al. // Roy. Soc. Chem. Adv. 2013. V. 3. P. 6417. https://doi.org/10.1039/c3ra22482a
  11. Lebedeva E.A., Astafieva S.A., Trukhinov D.K. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 191. https://doi.org/10.1134/S1990793123010244
  12. Myasoedova V., Zakharova E., Vasiljev I. // Annals DAAAM Proc. Intern. DAAAM Sympos. 2021. V. 32. P. 177. https://doi.org/10.2507/32nd.daaam.proceedings.027

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM micrographs of synthesized Ni nanoparticle powder samples with different resolutions.

Download (281KB)
3. Fig. 2. Histogram of the size distribution of Ni nanoparticles.

Download (119KB)
4. Fig. 3. X-ray phase study data for Ni nanoparticles.

Download (84KB)
5. Fig. 4. Photos of Ni/NiO/SEO composite extrudate samples in the form of strands.

Download (167KB)
6. Fig. 5. Photos of BC composite extrudate samples in the form of strands.

Download (233KB)
7. Fig. 6. Nomograms obtained from the experimental data: maximum strength (a) and relative elongation (b) of composites based on EOS filled with basalt scales with the following sizes: 0–50 μm (1), 50–100 μm (2), 100–160 μm (3), 0–300 μm (4).

Download (329KB)
8. Fig. 7. Simultaneous TG/DSC analysis of EOS in the temperature range of 20–350 °C.

Download (118KB)
9. Fig. 8. Simultaneous TG/DSC analysis of the 0.5 wt. % Ni/EOS composite in the temperature range of 20–350 °C.

Download (123KB)
10. Fig. 9. TGA curves for the following composites: 10 wt. % BC/EOS (1), EOS (2), 2.5 wt. % BC/EOS (3), 5 wt. % BC/EOS (4).

Download (102KB)
11. Fig. 10. DSC curves for the same composite compositions as in Fig. 9.

Download (131KB)

Copyright (c) 2024 Russian Academy of Sciences