The Initiation Mechanism of the Isoolefin Oligomerization Reaction in the Presence of Ethylaluminum Dichloride – Protonodonor Complex Catalysts

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The mechanism of isoolefins initiation in the presence of ethylaluminum dichloride – proton donor (water, phenol, hydrochloric acid) complex catalysts has been studied by ab initio HF.3.21G. The energetics of these reactions was estimated, the values of its activation energy and thermal effects were obtained. It was found that among the studied catalysts, an increase in the activation energy of the reaction of initiation of oligomerization of isoolefins contributes to an increase in the selectivity of the process.

Texto integral

Acesso é fechado

Sobre autores

G. Zaikov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: chembio@sky.chph.ras.ru
Rússia, Moscow

M. Artsis

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: chembio@sky.chph.ras.ru
Rússia, Moscow

V. Babkin

Sebryakovo Branch of the Volgograd State Technical University

Email: chembio@sky.chph.ras.ru
Rússia, Mikhailovka

D. Andreev

Sebryakovo Branch of the Volgograd State Technical University

Email: chembio@sky.chph.ras.ru
Rússia, Mikhailovka

A. Ignatov

Sebryakovo Branch of the Volgograd State Technical University

Email: chembio@sky.chph.ras.ru
Rússia, Mikhailovka

D. Zakharov

Sebryakovo Branch of the Volgograd State Technical University

Email: chembio@sky.chph.ras.ru
Rússia, Mikhailovka

V. Vovko

Volgograd State Technical University

Email: chembio@sky.chph.ras.ru
Rússia, Volgograd

V. Belousova

Sechenov First Moscow State Medical University

Email: chembio@sky.chph.ras.ru
Rússia, Moscow

Bibliografia

  1. Zaikov G.E., Artsis M.I., Andreev D.S., Ignatov A.V. // Russian Journal of Physical Chemistry B. 2022. V. 16. № 4. P. 606–614.
  2. Babkin V.A., Zaikov G.E., Minsker K.S. // Ufa: Gilem Publ., 1996. 182 p.
  3. Kol’tsov N. I. // Russian Journal of Physical Chemistry B. 2020. V. 14. № 5. P. 765–772. https://doi.org/10.1134/S1990793120050061.
  4. Tereza A.M., Agafonov G.L., Anderzhanov E.K., Medvedev S.P., Khomik S.V., Petrov S.K., Chernyshov M.V. // Russian Journal of Physical Chemistry B. 2020. V. 14. № 4. P. 654–659. https://doi.org/10.1134/S1990793120040247.
  5. Tarasov D.N., Tiger R.P. // Russian Journal of Physical Chemistry B. 2019. V. 13. No 3. P. 478–485. https://doi.org/10.1134/S1990793119030138.
  6. Volokhov V.M., Zyubina T.S., Volokhov A.V., Amosova E.S., Varlamov D.A., Lempert D.B., Yanovskii L.S. // Russian Journal of Physical Chemistry B. 2021. V. 15. № 1. P. 12–24. https://doi.org/10.1134/S1990793121010127
  7. Tsirelson V.G. // Moscow: Binom, 2010. 422 p.
  8. Babkin V.A., Andreev D.S., Ignatov A.V., Lisina L.M., Belousova V.S., Fomichev V.T., Prochukhan K.Yu., Artsis M.I., Zaikov G.E. // Oxidation Communications. 2019. V. 42. № 1. P. 56–62.
  9. Babkin V.A., Andreev D.S., Ignatov A.V., Belousova V.S., Fomichev V.T., Artsis M.I., Zaikov G.E. // Oxidation Communications. 2020. V. 43. № 1. P. 24–30.
  10. Babkin V.A., Andreev D.S., Ignatov A.V., Belousova V.S., Fomichev V.T., Akchurin T.K., Artsis M.I., Zaikov G.E. // Oxidation Communications. 2020. V. 43. № 2. P. 171–176.
  11. Granovsky A.A. 2013. http://classic.chem.msu.su/gran/firefly/index.html
  12. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A. // J.Comput.Chem. 1993. V. 14. P. 1347–1363.
  13. Bode B.M., Gordon M.S. // Journal of Molecular Graphics. 1998. No. 16. P. 133–138.
  14. Pasynkiewicz S., Boleslawski M., Sadownik A. // Journal of Organometallic Chemistry. 1976. V. 113. № 4. P. 303–309.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structure of the initial model of AlCl2C2H5-water (Cα) complex catalyst with 2,3,3-trimethylbutene-1.

Baixar (115KB)
3. Fig. 2. Final atomic-molecular structure of the interaction of the complex catalyst AlCl2C2C2H5-water (Cα) with 2,3,3-trimethylbutene-1 (AC).

Baixar (95KB)
4. Fig. 3. Variation of total energy (ΔE) along the reaction coordinate of the interaction reaction of the complex catalyst AlCl2C2H5-water (Cα) with 2,3,3-trimethylbutene-1.

Baixar (76KB)
5. Fig. 4. Structure of the initial model of AlCl2C2H5-phenol (Cα) complex catalyst with 2,3,3-trimethylbutene-1.

Baixar (134KB)
6. Fig. 5. Final atomic-molecular structure of the interaction of the complex catalyst AlCl2C2C2H5-phenol (Cα) with 2,3,3-trimethylbutene-1 (AC).

Baixar (144KB)
7. Fig. 6. Variation of total energy (ΔE) along the reaction coordinate of the interaction reaction of the complex catalyst AlCl2C2C2H5-phenol (Cα) with 2,3,3-trimethylbutene-1.

Baixar (72KB)
8. Fig. 7. Structure of the initial model of the complex catalyst of AlCl2C2H5-hydrochloric acid (Cα) with 2,3,3-trimethylbutene-1.

Baixar (119KB)
9. Fig. 8. Final atomic-molecular structure of the interaction of the complex catalyst AlCl2C2H5-hydrochloric acid (Cα) with 2,3,3-trimethylbutene-1 (AC).

Baixar (108KB)
10. Fig. 9. Variation of the total energy (E) along the coordinate of the reaction of the interaction of the complex catalyst AlCl2C2H5-hydrochloric acid (Cα) with 2,3,3-trimethylbutene-1.

Baixar (80KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024