Synthesis of HTSP Y11-xFexBa2Cu3Oy by Sol-Gel and Solid-Phase Methods
- Autores: Pigalskiy K.S.1, Vishnev A.A.1, Baldin E.D.1, Trakhtenberg L.I.1,2
-
Afiliações:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Lomonosov Moscow State University
- Edição: Volume 43, Nº 3 (2024)
- Páginas: 122-124
- Seção: Short Communication
- URL: https://kld-journal.fedlab.ru/0207-401X/article/view/674980
- DOI: https://doi.org/10.31857/S0207401X24030136
- EDN: https://elibrary.ru/VFNFRC
- ID: 674980
Citar
Resumo
A modified version of using of the sol-gel process at the initial stage of the synthesis of a high-temperature superconductor (HTSC) Y1-xFexBa2Cu3Oy with low Fe doping is proposed. The properties of samples obtained by sol-gel and solid-state synthesis have been compared. It has been shown that a more uniform distribution of the dopant throughout the volume of the sol-gel samples makes it possible to obtain materials with improved microstructural and performance characteristics.
Palavras-chave
Texto integral

Sobre autores
K. Pigalskiy
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: baldin.ed16@physics.msu.ru
Rússia, Moscow
A. Vishnev
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: baldin.ed16@physics.msu.ru
Rússia, Moscow
E. Baldin
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Autor responsável pela correspondência
Email: baldin.ed16@physics.msu.ru
Rússia, Moscow
L. Trakhtenberg
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Lomonosov Moscow State University
Email: baldin.ed16@physics.msu.ru
Rússia, Moscow; Moscow
Bibliografia
- Shlyakhtina A.V., Lyskov N.V., Shchegolikhin A. N. et al. // Ceram. Intern. 2020. V. 46. P. 17383.
- Ma J., Chen K., Li C. et al. // Ibid. 2021. V. 47. Issue 17. P. 24348.
- Politova E.D., Kaleva G.M., Mosunov A.V. et al. // Ferroelectr. 2020. V. 560. P. 38.
- Politova E.D., Kaleva G.M., Ivanov S.A. et al. // Ibid. 2023. V. 605. P. 73.
- Ikim M.I., Spiridonova E.Yu., Gromov V.F. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 774.
- Dokhlikova N.V., Gatin A.K., Sarvadiy S.Yu. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 772.
- Gerasimov G.N., Gromov V.F., Ikim M.I., Trakhtenberg L.I. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 1072.
- Gromov V.F., Ikim M.I., Gerasimov G.N., Trakhtenberg L.I. //Russ. J. Phys. Chem. B. 2021. V. 15. P. 1084.
- Pigalskiy K.S., Vishnev A.A., Efi mov N.N., Shabatin A.V., Trakhtenberg L.I. // Curr. Appl. Phys. 2022. V. 41. P. 116.
- Liu R.S., Wang W.N., Chang C.T., Wu P.T. // Jap. J. of Appl. Phys. 1989. V. 28. P. L2155.
- Raittila J., Huhtinen H., Paturi P.,. Stepanov Yu.P // Physica C. 2002. V. 371. P. 90.
- Mamsurova L.G., Trusevich N.G., Vishnev A.A. et al. // Russ. J. Phys. Chem. B. 2020. V. 14. P. 986.
Arquivos suplementares
