Kinetics of polaron capture by traps in a lithium niobate crystal
- 作者: Fedorenko S.1
-
隶属关系:
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Science
- 期: 卷 43, 编号 2 (2024)
- 页面: 33-44
- 栏目: Электрические и магнитные свойства материалов
- URL: https://kld-journal.fedlab.ru/0207-401X/article/view/674984
- DOI: https://doi.org/10.31857/S0207401X24020044
- EDN: https://elibrary.ru/WIUINC
- ID: 674984
如何引用文章
详细
The problem of reversible transformation and trapping of small-radius polarons in a lithium niobate crystal is considered within the framework of the integral encounter theory which is binary in the concentration of reatants. Analytical solutions are obtained for the relaxation kinetics of polarons, their lifetimes, and the rate constants of the corresponding channels of a multistage reaction controlled by polaron mobility. The temperature and concentration dependences of the observed quantities are analyzed. It is shown that at low temperatures polarons accumulate in a bound state characterized by an anomalously low relaxation rate.
全文:

作者简介
S. Fedorenko
Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Science
编辑信件的主要联系方式.
Email: fedorenk@kinetics.nsc.ru
俄罗斯联邦, Institutskaya 3, 630090, Novosibirsk
参考
- Imlau M., Badorreck H., Merschjann C. // Appl. Phys. Rev. 2015. V. 2. P. 040606.
- Günter P., Huignard J.P. // Photorefractive Materials and Their Applications 1. Springer, NY, USA, 2006. V. 113. P. 0342–4111.
- Bazzan M., Sada C. // Appl. Phys. Rev. 2015. V. 2. P. 040603.
- He J., Franchini C., Rondinelli J.M. // Chem. Mater. 2016. V. 28. P. 25.
- TisdaleW.A., Williams K.J., Timp B.A. // Science 2010. V. 328, P. 1543.
- Pelaez M., Nolan N.T., Pillai S.C. et al. // Appl. Catal. B Environ. 2012. V. 125, P. 331.
- Zhong Y., Trinh M.T., Chen R. et al. // J. Am. Chem. Soc. 2016. V. 138. P. 16165.
- Zhong Y., Trinh M.T., Chen R. et al. // Nat. Commun. 2015. V. 6, P. 1.
- Guilbert L., Vittadello L., Bazzan M. et al. // J. Phys. Condens. Matter. 2018. V. 30. P. 125701.
- Vittadello L., Bazzan M., Messerschmidt S. et al. // Crystals. 2018. V. 8. P. 294.
- Vittadello L., Guilbert L., Fedorenko S., Bazzan M. // Crystals. 2021. V. 11. P. 302.
- Marcus R. // J. Chem. Phys. 1956. V. 24. P. 966.
- Holstein T. // Ann. Phys. 1959. V. 8. P. 343.
- Burshtein A.I. // Adv. Chem. Phys. 2004. V. 129. P. 105.
- Balescu R. Equilibrium and Non-Equilibrium Statistical Mechanics. Willey, New-York, 1975.
- Kipriyanov A.A., Igoshin O.V., Doktorov A.B. // Physica A. 1999. V. 268. P. 567.
- Gopich I.V., Szabo A. // J. Chem. Phys. 2002. V. 117. P. 507.
- Lee S., Karplus M. // J. Chem. Phys. 1987. V. 86. P. 1883.
- Yang M., Lee S., Shin K.J. // J. Chem. Phys. 1998. V. 108. P. 9069.
- Shklovskii B.I., Efros A.L. Electronic Properties of Doped Semiconductors. Berlin, Springer-Verlag 1984.
- Mott N.F., Davis E.A. Electron Process in Non-Crystalline Materials. Oxford, Clarendon Press, 1979.
- Movaghar B., Sauer G.W. // J. Phys. C. 1980, V. 13. P. 4933.
- Bryksin V.V. // Fiz. Tverd. Tela. 1980. V. 22. P. 2441.
- Bryksin V.V. // Fiz. Tverd. Tela. 1984. V. 26. P. 1362.
- Gochanour C.R., Andersen H.C., Fayer M.D. // J. Chem. Phys. 1979. V. 70. P. 4254.
- Fedorenko S.G., Khokhlova S.S., Burshtein A.I. // J. Phys. Chem. A 2012. V. 116. P. 3.
- Fedorenko S.G., Burshtein A.I. // J. Chem. Phys. 2014. V. 141. P. 114504.
- Fedorenko S.G., Burshtein A.I. // J. Phys. Chem. A. 2010. V. 114. P. 4558.
- Doktorov A.B., Burshtein A.I. // Sov. Phys. JETP 1976. V. 41. P. 671.
- Doktorov A.B., Kipriyanov A.A., Burshtein A.I. // Sov. Phys. JETP 1978. V. 47. P. 623.
- Burshtein A.I., Doktorov A.B., Kipriyanov A.A. et al. // Sov. Phys. JETP 1985. V. 61. P. 516.
- Gradshtein I.S., RyzhikI.M. Table of Integrals, Sums, Series and Derivatives. Berlin, VEB Deutscher Verlag, 1963.
补充文件

注意
Х Международная конференция им. В.В. Воеводского “Физика и химия элементарных химических процессов” (сентябрь 2022, Новосибирск, Россия).