Method of splitting polarization coordinates for description of ultrafast multistage electron transfer in a non-debye medium
- Авторлар: Feskov S.V.1
-
Мекемелер:
- Volgograd State University
- Шығарылым: Том 43, № 1 (2024)
- Беттер: 3-12
- Бөлім: Элементарные физико-химические процессы
- URL: https://kld-journal.fedlab.ru/0207-401X/article/view/674993
- DOI: https://doi.org/10.31857/S0207401X24010017
- EDN: https://elibrary.ru/mlxatu
- ID: 674993
Дәйексөз келтіру
Аннотация
A method for constructing the space of medium states in reactions of ultrafast multistage intramolecular electron transfer in media with several relaxation times is developed. The method uses the splitting of polarization coordinates into relaxation components, and is a generalization of two previously developed approaches used (1) to describe multistage reactions, and (2) to consider multicomponent relaxation. Within the suggested generalized scheme, a model of charge transfer in a three-center molecular system in the environment with a two-component relaxation function is considered, an algorithm for constructing the diabatic free energy surfaces of electronic states is described, a system of equations for the evolution of the distribution functions is written. The results of the general model are shown to reproduce well-known solutions in particular cases.
Толық мәтін

Авторлар туралы
S. Feskov
Volgograd State University
Хат алмасуға жауапты Автор.
Email: serguei.feskov@volsu.ru
Ресей, Volgograd
Әдебиет тізімі
- Kuznetsov A.M., Ulstrup J. Electron Transfer in Chemistry and Biology: An Introduction to the Theory. Wiley, 1999.
- Blumberger J. // Chem. Rev. 2015. V. 115. No. 20. P. 11191. https://doi.org/10.1021/acs.chemrev.5b00298
- Fukuzumi S. Electron Transfer: Mechanisms and Applications. Wiley-VCH Verlag, 2020. https://doi.org/10.1002/9783527651771
- Marcus R.A. // J. Chem. Phys. 1956. V. 24. P. 966. https://doi.org/10.1063/1.1742723
- Zusman L.D. // Chem. Phys. 1980. V. 49. № 2. P. 295. https://doi.org/10.1016/0301-0104(80)85267-0
- Barzykin A.V., Frantsuzov P.A., Seki K. et al // Adv. Chem. Phys. 2002. V. 123. P. 511. https://doi.org/ 10.1002/0471231509.ch9
- Misra R., Bhattacharyya S.P. Intramolecular Charge Transfer: Theory and Applications. Wiley, 2018.
- Feskov S.V., Mikhailova V.A., Ivanov A.I. // J. Photochem. Photobiol. C 2016 V. 29. P. 48. https://doi.org/10.1016/j.jphotochemrev.2016.11.001
- Cho M., Silbey R.J. // J. Chem. Phys. 1995. V. 103. P. 595. https://doi.org/10.1063/1.470094
- Najbar J., Tachiya M. // J. Photochem. Photobiol. 1996. V. 95. P. 51. https://doi.org/10.1016/1010-6030(95)04232-6
- Khokhlova S.S., Mikhailova V.A., Ivanov A.I. // J. Chem. Phys. 2006. V. 124. P. 114507. https://doi.org/10.1063/1.2178810
- Newton M.D. // Isr. J. Chem. 2004. V. 44. P. 83. https://doi.org/10.1560/LQ06-T9HQ-MTLM-2VC1
- Hilczer M., Tachiya M. // J. Phys. Chem. 1996. V. 100. P. 8815. https://doi.org/10.1021/jp953213x
- Motylewski T., Najbar J., Tachiya M. // Chem. Phys. 1996. V. 212. P. 193. https://doi.org/10.1016/S0301-0104(96)00175-9
- Tang J., Norris J.R. // J. Chem. Phys. 1994. V. 101. P. 5615. https://doi.org/10.1063/1.467348
- Feskov S.V., Ivanov A.I. // Chem. Phys. 2016. V. 478. P. 164. https://doi.org/10.1016/j.chemphys.2016.03.013
- Feskov S.V., Ivanov A.I. // Russ. J. Phys. Chem. A. 2016. V. 90. № 1. P. 144. https://doi.org/10.1134/S0036024416010106
- Bazlov S.V., Feskov S.V., Ivanov A.I. // Russ. J. Phys. Chem. B. 2017. V. 11. № 2. P. 242. https://doi.org/10.1134/S1990793117020026
- Mikhailova T.V., Mikhailova V.A., Ivanov A.I. // J. Phys. Chem. C 2018. V. 122. P. 25247. https://doi.org/10.1021/acs.jpcc.8b09097
- Feskov S.V., Ivanov A.I. // J. Chem. Phys. 2018. V. 148. P. 104107. https://doi.org/10.1063/1.5016438
- Wallin S., Monnereau C., Blart E. et al // J. Phys. Chem. A 2010. V. 114. P. 1709. https://doi.org/10.1021/jp907824d
- Robotham B., Lastman K.A., Langford S.J. et al // J. Photochem. Photobiol. A 2013. V. 251. P. 167. https://doi.org/10.1016/j.jphotochem.2012.11.002
- LeBard D. N., Martin D. R., Lin S. et al // Chem. Sci. 2013. V. 4. P. 4127. https://doi.org/10.1039/C3SC51327K
- Savintseva L.A., Avdoshina A.A., Ignatov S.K. // Russ. J. Phys. Chem. B. 2022. V. 16. No. 3. P. 445. https://doi.org/10.1134/S1990793122030216
- Zusman L.D. // Chem. Phys. 1988. V. 119. P. 51. https://doi.org/10.1016/0301-0104(88)80005-3
- Feskov S.V., Yudanov V.V. // Russ. J. Phys. Chem. A. 2017. V. 91. No. 9. P. 1816. https://doi.org/10.1134/S0036024417090102
- Gromov S.P., Chibisov A.K., Alfimov M.V. // Russ. J. Phys. Chem. B. 2021. V. 15. No. 2. P. 219. https://doi.org/10.1134/S1990793121020202
- Ostrovsky M.A., Nadtochenko V.A. // Russ. J. Phys. Chem. B. 2021. V. 15. No. 2. P. 344. https://doi.org/10.1134/S1990793121020226
- Gaydamaka S.N., Gladchenko M.A., Murygina V.P. // Russ. J. Phys. Chem. B. 2020. V. 14. No. 1. P. 160. https://doi.org/10.1134/S1990793120010200
- Jimenez R., Fleming G.R., Kumar P.V. et al // Nature. 1994. V. 369. P. 471. https://doi.org/10.1038/369471a0
- Maroncelli M., Kumar V.P., Papazyan A. // J. Phys. Chem. 1993. V. 97. P. 13. https://doi.org/10.1021/j100103a004
- Nazarov A.E., Ivanov A.I., Rosspeintner A. et al // J. Mol. Liq. 2022. V. 360. P. 119387. https://doi.org/10.1016/j.molliq.2022.119387
- Ivanov A.I., Maigurov A. // Khim. Fiz. 2003. V. 77. P. 297 [in Russian].
Қосымша файлдар
