The Rate of Absorption by the Styrene Epoxide–P-Toluene Sulfonic Acid Double System Depending on the Structure of the Aliphatic Tail of the Alcohol Solvent

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Oxygen oxidation of the styrene epoxide (SE)–p-toluene sulfonic acid (TSA) double system (DS)
in solutions of three primary alcohols, 1-octanol (OCT), n-butanol (BUT), and ethanol (ET), is studied. The
corresponding concentration expressions of oxidation rates are as follows: VOCT = k [SE]0 [TSA]1, VBUT = k
[SE]0 [TSA]0.63, and VET = k [SE]0 [TSA]0.7 at [SE] [TSA]. The proximity of the oxidation activation energies
in three alcohols contrasts with the difference in the oxidation rates: the oxidation rate in ET is three
times the rate in n-butanol and thirty times the oxidation rate in 1-octanol.

Sobre autores

V. Solyanikova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: plv@icp.ac.ru
Chernogolovka, Russia

L. Petrov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: plv@icp.ac.ru
Chernogolovka, Russia

Bibliografia

  1. Gorzynski Smith J. // Synthesis. 1984. № 8. P. 629; https://doi.org/10.1055/s-1984-30921
  2. Vilotijevic I., Jamison T.F. // Angev. Chem. Inter. Ed. 2009. V. 48. № 29. P. 5250; https://doi.org/10.1002/anie.200900600
  3. Крылов А.В., Мохаммед А.Х., Егорова В.В., Борисова Е.Я., Борисова Н.Ю., Флид В.Р. // Изв. АН. Сер. хим. 2012. № 6. С. 1119.
  4. Weil T., Kotke M., Kleiner Ch. M., Schreiner P.R. // Org. Lett. 2008. V. 10. № 8. P. 1513; https://doi.org/10.1021/ol800149y
  5. Zhou Y.-X., Chen Y.-Z., Hu Y. et al. // Chem. Eur. J. 2014. V. 20. P. 1; https://doi.org/10.1002/chem201404104
  6. Dhakshinamoarhy A., Alvaro M., Concepcion P., Fornes V., Garsia H. // Chem. Commun. 2012. V. 48. № 44. P. 5443; https://doi.org/10.1039/c2cc31385e
  7. Parker R.E., Isaacs N.S. // Chem. Rev. 1959. V. 53. № 4. P. 737; https://doi.org/10.1021/cr50028a006
  8. Biggs J., Chapman N.B., Finch A.F., Wray V. // J. Chem. Soc. (B). 1971. V. 1. P. 55; https://doi.org/10.1039/J29710000055
  9. Петров Л.В., Соляников В.М. // ДАН. 1996. Т. 350. № 3. С. 357.
  10. Спирин М.Г., Бричкин С.Б., Петров Л.В. // Изв. АН. Сер. хим. 2016. № 10. С. 2452.
  11. Петров Л.В., Соляников В.М. // Хим. физика. 2022. Т. 41. № 12. С. 22; https://doi.org/10.31857/S0207401X22090084
  12. Петров Л.В., Соляников В.М. // Нефтехимия. 1999. Т. 39. № 2. С. 107.
  13. Петров Л.В., Соляников В.М. // Нефтехимия. 2003. Т. 43. № 3. С. 199.
  14. Петров Л.В., Соляников В.М. // Нефтехимия. 2012. Т. 52. № 5. С. 362.
  15. Петров Л.В., Соляников В.М. // Хим. физика. 2016. Т. 35. № 10. С. 21; https://doi.org/10.7868/S0207401X16100095
  16. Петров Л.В., Соляников В.М. // Хим. физика. 2018. Т. 37. № 12. С. 28; https://doi.org/10.1134/S0207401X18120075
  17. Петров Л.В., Соляников В.М. // Хим. физика. 2020. Т. 39. № 1. С. 19; https://doi.org/10.31857/S0207401X20010112
  18. Петров Л.В., Соляников В.М. // Хим. физика. 2021. Т. 40. № 7. С. 11; https://doi.org/10.31857/S0207401X21070086
  19. Петров Л.В., Соляников В.М. // Нефтехимия. 2010. Т. 50. № 2. С. 164.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (48KB)
3.

Baixar (41KB)
4.

Baixar (42KB)
5.

Baixar (38KB)
6.

Baixar (46KB)
7.

Baixar (14KB)
8.

Baixar (19KB)
9.

Baixar (9KB)
10.

Baixar (18KB)
11.

Baixar (76KB)

Declaração de direitos autorais © В.М. Соляников, Л.В. Петров, 2023