Nanosized platform based on magnetic nanoparticles for photodynamic therapy in oncology

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Hybrid nanosystems based on iron oxide nanoparticles (IONPs) and human serum albumin (HSA) have been synthesized. Size and composition of HSA@IONPs nanosystems were characterized using UV/visible spectrophotometry (particularly, using the Bradford protein assay), dynamic light scattering and electron magnetic resonance. Methylene blue, as a model photosensitizer, was non-covalently bound to the nanosystems (5.8 μg per 1 mg of IONPs). The nanosystems were subjected to phototoxicity studies to confirm their suitability for photodynamic therapy, and the survival of cultured human breast adenocarcinoma MCF-7 tumor cells was analyzed. An increase in photoinduced cytotoxicity was observed when the photosensitizer was accumulated by cells upon delivery by the nanosystems, compared with a free photosensitizer at equivalent concentrations. HSA@IONPs are discussed as a promising platform for targeted delivery of a photosensitizer to tumor cells.

全文:

受限制的访问

作者简介

A. Bychkova

Emanuel Institute of Biochemical Physics Russian Academy of Sciences

编辑信件的主要联系方式.
Email: anna.v.bychkova@gmail.com
俄罗斯联邦, Moscow

A. Markova

Emanuel Institute of Biochemical Physics Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
俄罗斯联邦, Moscow

M. Nguyen

Emanuel Institute of Biochemical Physics Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
俄罗斯联邦, Moscow

M. Gradova

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
俄罗斯联邦, Moscow

M. Gorobets

Emanuel Institute of Biochemical Physics Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
俄罗斯联邦, Moscow

M. Motyakin

Emanuel Institute of Biochemical Physics Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
俄罗斯联邦, Moscow

M. Abdullina

Emanuel Institute of Biochemical Physics Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
俄罗斯联邦, Moscow

A. Toroptseva

Emanuel Institute of Biochemical Physics Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
俄罗斯联邦, Moscow

V. Kuzmin

Emanuel Institute of Biochemical Physics Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
俄罗斯联邦, Moscow

参考

  1. A. Aires, S.M. Ocampo, D. Cabrera, et al., J. Mater. Chem. B 3, 6239 (2015). https://doi.org/10.1039/C5TB00833F
  2. L.Q. Thao, H.J. Byeon, C. Lee, et al., Pharm. Res. 33, 615 (2016). https://doi.org/10.1007/s11095-015-1814-z
  3. H. Nosrati, M. Salehiabar, H.K. Manjili, et al., Int. J. Biol. Macromol. Elsevier B.V. 108, 909 (2018). https://doi.org/10.1016/j.ijbiomac.2017.10.180
  4. A.S. Chubarov, Magnetochemistry 8, 13 (18 pages) (2022). https://doi.org/10.3390/magnetochemistry8020013
  5. L.L. Israel, A. Galstyan, E. Holler, et al., J. Control. Release 320, 45 (2020). https://doi.org/10.1016/j.jconrel.2020.01.009
  6. A. V. Bychkova, M.N. Yakunina, M. V. Lopukhova, et al., Pharmaceutics 14, 2771 (2022). https://doi.org/10.3390/pharmaceutics14122771
  7. E. Vismara, C. Bongio, A. Coletti, et al., Molecules 22, 1030 (2017). https://doi.org/10.3390/molecules22071030
  8. J. Estelrich, and M. Busquets, Molecules 23, 1567 (2018). https://doi.org/10.3390/molecules23071567
  9. D.V. Pominova, I.D. Romanishkin, E.A. Plotnikova, et al., Biomed. Photonics 10, 44 (2021). https://doi.org/10.24931/2413- 9432-2021-10-4-44-58
  10. A. Baki, A. Remmo, N. Löwa, et al., Int. J. Mol. Sci. 22, 6235 (2021). https://doi.org/10.3390/ijms22126235
  11. C. Tao, Q. Zheng, L. An, et al., Nanomaterials 9, 170 (2019). https://doi.org/10.3390/nano9020170
  12. A. Tzameret, H. Ketter-Katz, V. Edelshtain, et al., J. Nanobiotechnology 17, 3 (2019). https://doi.org/10.1186/s12951-018-0438-y
  13. X. Liang, M. Chen, P. Bhattarai, et al., ACS Nano 15, 20164 (2021). https://doi.org/10.1021/acsnano.1c08108
  14. D. Sleep, Expert Opin. Drug Deliv. 12, 793 (2015). https://doi.org/10.1517/17425247.2015.993313
  15. A.S. Shurshina, A.R. Galina, and E.I. Kulish, Russ. J. Phys. Chem. B 16, 353 (2022). https://doi.org/10.1134/S1990793122020221
  16. M.A. Kolyvanova, M.A. Klimovich, O. V. Dement’eva, et al., Russ. J. Phys. Chem. B 17, 206 (2023). https://doi.org/10.1134/S1990793123010062
  17. H. Li, Y. Wang, Q. Tang, et al., Acta Biomater. 129, 57 (2021). https://doi.org/10.1016/j.actbio.2021.05.019
  18. D. Baimanov, J. Wang, J. Zhang, et al., Nat. Commun. 13, 5389 (2022). https://doi.org/10.1038/s41467-022-33044-y
  19. F. Pederzoli, G. Tosi, M.A. Vandelli, et al., Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 9, 1 (2017). https://doi.org/10.1002/wnan.1467
  20. A.B. Seabra, Metal Nanoparticles in Pharma Cham: Springer International Publishing 3 (2017). https://doi.org/10.1007/978-3-319-63790-7_1
  21. M. Nafiujjaman, V. Revuri, M. Nurunnabi, et al., Chem. Commun. 51, 5687 (2015). https://doi.org/10.1039/C4CC10444G
  22. A. Amirshaghaghi, L. Yan, J. Miller, et al., Sci. Rep. 9, 2613 (2019). https://doi.org/10.1038/s41598-019-39036-1
  23. H. Yao, and J.-Y. Zhou, Front. Bioeng. Biotechnol. 11, (2023). https://doi.org/10.3389/fbioe.2023.1248283
  24. C.A. Henriques, S.M.A. Pinto, J. Pina, et al., Dalt. Trans. 45, 16211 (2016). https://doi.org/10.1039/C6DT02428A
  25. M. Thandu, V. Rapozzi, L. Xodo, et al., Chempluschem 79, 90 (2014). https://doi.org/10.1002/cplu.201300276
  26. M. Nowostawska, S.A. Corr, S.J. Byrne, et al., J. Nanobiotechnology 9, 13 (2011). https://doi.org/10.1186/1477-3155-9-13
  27. J.-P. Mbakidi, F. Brégier, T.-S. Ouk, et al., Chempluschem 80, 1416 (2015). https://doi.org/10.1002/cplu.201500087
  28. P. Ostroverkhov, A. Semkina, V. Naumenko, et al., Pharmaceutics 10, 284 (2018). https://doi.org/10.3390/pharmaceutics10040284
  29. N. V. Suvorov, M.A. Grin, A.M. Popkov, et al., Macroheterocycles 9, 175 (2016). https://doi.org/10.6060/mhc160645s
  30. A. Ashkbar, F. Rezaei, F. Attari, et al., Sci. Rep. 10, 21206 (2020). https://doi.org/10.1038/s41598-020-78241-1
  31. Z. Deng, G. Qiao, L. Ma, et al., ACS Appl. Nano Mater. 4, 13523 (2021). https://doi.org/10.1021/acsanm.1c02929
  32. N. Kwon, H. Kim, X. Li, et al., Chem. Sci. 12, 7248 (2021). https://doi.org/10.1039/D1SC01125A
  33. M.A. Klimovich, N.N. Sazhina, A.S. Radchenko, et al. 15, 93 (2021). https://doi.org/10.1134/S1990793121010206
  34. A.A. Kostyukov, M.G. Mestergazi, A.E. Egorov, et al., Dye. Pigment. 210, 111043 (2023). https://doi.org/10.1016/j.dyepig.2022.111043
  35. I.D. Burtsev, A.E. Egorov, A.A. Kostyukov, et al., Russ. J. Phys. Chem. B 16, 109 (2022). https://doi.org/10.1134/S1990793122010195
  36. A. V. Zaitsev, E.G. Kononova, A.A. Markova, et al., Dye. Pigment. 207, 110711 (2022). https://doi.org/10.1016/j.dyepig.2022.110711
  37. J. Luo, Z. Miao, X. Huang, et al., Front. Bioeng. Biotechnol. 11, (2023). https://doi.org/10.3389/fbioe.2023.1132591
  38. A.S. Tatikolov, Russ. J. Phys. Chem. B 15, 33 (2021). https://doi.org/10.1134/S1990793121010280
  39. G. Capistrano, A.A. Sousa-Junior, R.A. Silva, et al., ACS Biomater. Sci. Eng. 6, 4523 (2020). https://doi.org/10.1021/acsbiomaterials.0c00164
  40. P. V Ostroverkhov, A.S. Semkina, V.A. Naumenko, et al., J. Colloid Interface Sci. Elsevier Inc. 537, 132 (2019). https://doi.org/10.1016/j.jcis.2018.10.087
  41. A.R. Simioni, M.M.A. Rodrigues, F.L. Primo, et al., J. Nanosci. Nanotechnol. 11, 3604 (2011). https://doi.org/10.1166/jnn.2011.3724
  42. J.P. Tardivo, A. Del Giglio, C.S. de Oliveira, et al., Photodiagnosis Photodyn. Ther. 2, 175 (2005). https://doi.org/10.1016/S1572-1000(05)00097-9
  43. A.F. dos Santos, L.F. Terra, R.A.M. Wailemann, et al., BMC Cancer 17, 194 (2017). https://doi.org/10.1186/s12885-017-3179-7
  44. Y. Zhang, Z. Ye, R. He, et al., Colloids Surfaces B Biointerfaces 224, 113201 (2023). https://doi.org/10.1016/j.colsurfb.2023.113201
  45. D.B. Tada, L.L.R. Vono, E.L. Duarte, et al., Langmuir 23, 8194 (2007). https://doi.org/10.1021/la700883y
  46. V.H. Toledo, T.M. Yoshimura, S.T. Pereira, et al., J. Photochem. Photobiol. B Biol. 209, 111956 (2020). https://doi.org/10.1016/j.jphotobiol.2020.111956
  47. X. Zhao, Z. Chen, H. Zhao, et al., RSC Adv. 4, 62153 (2014). https://doi.org/10.1039/C4RA10801A
  48. A. V. Bychkova, M. V. Lopukhova, L.A. Wasserman, et al., Biochim. Biophys. Acta - Proteins Proteomics 1868, 140300 (2020). https://doi.org/10.1016/j.bbapap.2019.140300
  49. A. V. Bychkova, M. V. Lopukhova, L.A. Wasserman, et al., Int. J. Biol. Macromol. Elsevier B.V. 194, 654 (2022). https://doi.org/10.1016/j.ijbiomac.2021.11.110
  50. Y. Usui, Chem. Lett. 2, 743 (1973). https://doi.org/10.1246/cl.1973.743
  51. P. Najafi, and H. Kouchakzadeh, Nanomedicine J. 6, 55 (2019). https://doi.org/10.22038/NMJ.2019.06.008
  52. Y.-J. Hu, W. Li, Y. Liu, et al., J. Pharm. Biomed. Anal. 39, 740 (2005). https://doi.org/10.1016/j.jpba.2005.04.009
  53. A. V. Povolotskiy, D.A. Soldatova, D.A. Lukyanov, et al., Russ. J. Phys. Chem. B 17, 1398 (2023).
  54. E. Alarcón, A.M. Edwards, A. Aspee, et al., Photochem. Photobiol. Sci. 9, 93 (2010). https://doi.org/10.1039/b9pp00091g
  55. L.-L. He, Y.-X. Wang, X.-X. Wu, et al., Luminescence 30, 1380 (2015). https://doi.org/10.1002/bio.2910
  56. C.-W. Hsu, N.-C. Cheng, M.-Y. Liao, et al., Nanomaterials 10, 1351 (2020). https://doi.org/10.3390/nano10071351

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Number of publications in the PubMed database by year, by the keyword “nanoparticles” and additional keywords indicated in the figure: “serum albumin”, “iron oxide”, “iron oxides”, “magnetite”.

下载 (72KB)
3. Fig. 2. Schematic representation of the stages of preparation of samples of hybrid nanosystems MS–(HSA@NCHO): obtaining nanoparticles in an albumin coating and non-covalent binding of nanoparticles to methylene blue.

下载 (57KB)
4. Fig. 3. Absorption spectra of methylene blue in water (1) and in the supernatant solution after magnetic separation of MS–(HSA@NCHO) (2).

下载 (25KB)
5. Fig. 4. Volume distributions of particle sizes obtained by dynamic light scattering in the control sample of NChOZh (left) and the experimental sample of ChSA@NChOZh (right).

下载 (46KB)
6. Fig. 5. Dark (1) and photoinduced cytotoxicity (2) of HSA@NCHO, MS–(HSA@NCHO) and MS on MCF-7 cells.

下载 (19KB)

版权所有 © Russian Academy of Sciences, 2024