Saccharina japonica seaweed-derived biochar production at various pyrolysis temperatures
- Authors: Tsvetkov M.V.1, Zaichenko A.Y.1, Podlesniy D.N.1, Glukhov A.A.1, Tsvetkova Y.Y.1, Repina M.A.2, Salgansky E.A.1, Latkovskaya E.M.2
-
Affiliations:
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
- Sakhalin State University
- Issue: Vol 44, No 4 (2025)
- Pages: 3-10
- Section: ВЛИЯНИЕ ВНЕШНИХ ФАКТОРОВ НА ФИЗИКО-ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ
- URL: https://kld-journal.fedlab.ru/0207-401X/article/view/682721
- DOI: https://doi.org/10.31857/S0207401X25040013
- ID: 682721
Cite item
Abstract
Biochars from the seaweed Saccharina japonica were obtained by stepwise pyrolysis at temperatures of 300, 400, 500, 700, 900 °C. Its characteristics and properties were studied: elemental composition, specific surface area and total pore volume, particle size distribution, as well as characteristic functional groups were determined using IR-Fourier spectroscopy. With an increase in the pyrolysis temperature from 300 °C to 900 °C, the biochar yield decreases from 50.4% to 22.7%. The biochar obtained at 500 °C has the largest specific surface area – 38.6 m2/g. As the pyrolysis temperature increases, the elemental composition of the biochar changes: the content of carbon, hydrogen, nitrogen decreases, and the content of sulfur and oxygen increases.
Keywords
Full Text

About the authors
M. V. Tsvetkov
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: tsvetkovmv@gmail.com
Russian Federation, Chernogolovka
A. Yu. Zaichenko
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: tsvetkovmv@gmail.com
Russian Federation, Chernogolovka
D. N. Podlesniy
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: tsvetkovmv@gmail.com
Russian Federation, Chernogolovka
A. A. Glukhov
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: tsvetkovmv@gmail.com
Russian Federation, Chernogolovka
Yu. Yu. Tsvetkova
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: tsvetkovmv@gmail.com
Russian Federation, Chernogolovka
M. A. Repina
Sakhalin State University
Email: tsvetkovmv@gmail.com
Russian Federation, Yuzhno-Sakhalinsk
E. A. Salgansky
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: tsvetkovmv@gmail.com
Russian Federation, Chernogolovka
E. M. Latkovskaya
Sakhalin State University
Email: tsvetkovmv@gmail.com
Russian Federation, Yuzhno-Sakhalinsk
References
- J. Liu, F. Zhou, A.M. Abed et al. Fuel 336, 126826 (2023). https://doi.org/10.1016/j.fuel.2022.126826
- M. Narayanan. Renew. Sust. Energ. Rev. 190 114081 (2024). https://doi.org/10.1016/j.rser.2023.114081
- O. Babich, S. Sukhikh, V. Larina et al. Plants 11 (6), 780 (2022). https://doi.org/10.3390/plants11060780
- D. Zhuang, N. He, K.S. Khoo et al. Chemosphere 291, 132932 (2022). https://doi.org/10.1016/j.chemosphere.2021.132932
- F. Sultana, M.A. Wahab, M. Nahiduzzaman et al. Aquaculture and Fisheries. 8 (5), 463 (2023). https://doi.org/10.1016/j.aaf.2022.09.001
- H.B. Hariz, R.J. Lawton, R.J. Craggs. Ecol. Eng 189, 106910 (2023). https://doi.org/10.1016/j.ecoleng.2023.106910
- M. Naď, V. Brummer, P. Lošák et al. J. Clean. Prod. 385, 135721 (2023). https://doi.org/10.1016/j.jclepro.2022.135721
- P. Sathinathan, H.M. Parab, R.Yusoff et al. Renew. Sustain. Energy Rev. 173, 113096 (2023). https://doi.org/10.1016/j.rser.2022.113096
- Y. Yin and J. Wang. Renew. Energy, 141, 1 (2019). https://doi.org/10.1016/j.renene.2019.03.139
- V. Pishchalnik, S. Myslenkov, E. Latkovskaya, V. Arkhipkin Sustainability, 16 (7), 3031 (2024). https://doi.org/10.3390/su16073031
- J.H. Choi, S.S. Kim, D.J. Suh et al. Korean J. Chem. Eng. 33, 2691 (2016). https://doi.org/10.1007/s11814-016-0131-5
- M.V. Tsvetkov, A.Yu. Zaichenko, D.N. Podlesniy, M.A. Repina, A.A. Glukhov. E3S Web Conf. 474, 01012 (2024). https://doi.org/10.1051/e3sconf/202447401012
- Z.I. Rony, M.G. Rasul, M.I. Jahirul, M. Mofijur. Fuel 358, 130099 (2024). https://doi.org/10.1016/j.fuel.2023.130099
- A. Amrullah, O. Farobie Heliyon 9 (7) (2023). https://doi.org/10.1016/j.heliyon.2023.e18350
- X. Wang, Y. Zhang, C. Xia et al. Fuel 338, 127378 (2023). https://doi.org/10.1016/j.fuel.2022.127378
- V.M. Kislov, M.V. Tsvetkov, A.Y. Zaichenko et al. Russ. J. Phys. Chem. B 17 (4), 947 (2023). https://doi.org/10.1134/S1990793123040255
- M.S. Vlaskin, N.I. Chernova, S.V. Kiseleva et al. Therm. Eng. 64, 627 (2017). https://doi.org/10.1134/S0040601517090105
- N. Ripoll, C. Silvestre, E. Paredes, M. Toledo // Int. J. Hydrog. Energy 42 (8), 5513 (2017). https://doi.org/10.1016/j.ijhydene.2016.03.082
- V.M. Kislov, Y.Y. Tsvetkova, E.N. Pilipenko, M.A. Repina M.V. Salganskaya. Russ. J. Phys. Chem. B 17 (2), 374 (2023). https://doi.org/10.1134/S1990793123020070
- Z. Yang, Y. Wu, Z. Zhang et al. Renew. Sustain. Energy Rev. 103, 384 (2019). https://doi.org/10.1016/j.rser.2018.12.047
- M.V. Tsvetkov, A.Y. Zaichenko, D.N. Podlesniy. E3S Web Conf. 419, 01010 (2023). https://doi.org/10.1051/e3sconf/202341901010
- E.A. Salgansky, M.V. Salganskaya, I.V. Sedov. Russ. J. Phys. Chem. B 18, 1042 (2024). https://doi.org/10.1134/S1990793124700593
- P. Danesh, P. Niaparast, P. Ghorbannezhad, I. Ali. Fuel 337, 126889 (2023). https://doi.org/10.1016/j.fuel.2022.126889
- L. Campion, M. Bekchanova, R. Malina and T. Kuppens J. Clean. Prod. 408, 137138 (2023). https://doi.org/10.1016/j.jclepro.2023.137138
- Y.K. Leong, J.S. Chang Bioresour. Technol. 389, 129782 (2023). https://doi.org/10.1016/j.biortech.2023.129782
- T.B. Nguyen, V.T. Nguyen, H.G. Hoang et al. Curr. Pollution Rep. 9, 73 (2023). https://doi.org/10.1007/s40726-022-00243-6
- M. Tsvetkov, A. Zaichenko, D. Podlesniy et al. E3S Web Conf. 2024. V. 498. ID 02002. https://doi.org/10.1051/e3sconf/202449802002
- A.N. Morozov, S.E. Tabalin, D.R. Anfimov et al. Russ. J. Phys. Chem. B 18, 763 (2024). https://doi.org/10.1134/S1990793124700234
- R.K. Sharma, T.P. Singh, J. Haydary, D. Azad, A. Verma. Biochar Production for Green Economy. Academic Press, 81 (2024). https://doi.org/10.1016/B978-0-443-15506-2.00015-8
- Y.Y. Tsvetkova, V.M. Kislov, E.N. Pilipenko, M.V. Tsvetkov, M.V. Salganskaya. Russ. J. Phys. Chem. B 18, 980 (2024). https://doi.org/10.1134/S199079312470043X
- B.K. Biswal, R. Balasubramanian. J. Environ. Chem. Eng. 11(5), 110986 (2023). https://doi.org/10.1016/j.jece.2023.110986
- S.L. Lin, H. Zhang, W.H. Chen, M. Song, E.E. Kwon. Bioresour. Technol. 387, 129588 (2023). https://doi.org/10.1016/j.biortech.2023.129588
- S. Manikandan, S. Vickram, R. Subbaiya et al. Bioresour. Technol. 338, 129725 (2023). https://doi.org/10.1016/j.biortech.2023.129725
- A.A. Belmesov, A.A. Glukhov, R.R. Kayumov et al. Coatings 13(12), 2075 (2023). https://doi.org/10.3390/coatings13122075
- G.G. Satpati, A. Devi, D. Kundu et al. Environ. Res. 258, 119408 (2024). https://doi.org/10.1016/j.envres.2024.119408
- K. Anastasakis, A.B. Ross, J.M. Jones. Fuel 90(2), 598 (2011). https://doi.org/10.1016/j.fuel.2010.09.023
- M. Imran, S.L. Badshah, J.L.F. Alves et al. Biomass Conv. Bioref. 14, 24847 (2023). https://doi.org/10.1007/s13399-023-04741-5
- K.M. Poo, E.B. Son, J.S. Chang et al. J. Environ. Manage. 206, 364 (2018). https://doi.org/10.1016/j.jenvman.2017.10.056
- E.B. Son, K.M. Poo, J.S. Chang, K.J. Chae Sci. Total Environ. 615, 161 (2018). https://doi.org/10.1016/j.scitotenv.2017.09.171
- K. Srividya and K. Mohanty. Chem. Eng. J. 155 (3), 666 (2009). https://doi.org/10.1016/j.cej.2009.08.024
- A.A. Oladipo, M. Gazi J. Water Process Eng. 2, 43 (2014). https://doi.org/10.1016/j.jwpe.2014.04.007
- F. Pahlavan, H. Kaur, L.K. Ackerman-Biegasiewicz, A. Lamanna
- E.H. Fini. Resour. Conserv. Recycl. 210, 107810 (2024). https://doi.org/10.1016/j.resconrec.2024.107810
Supplementary files
