A generalized method for the estimation of the intensity of electron-phonon interaction in photosynthetic pigments using the evolutionary optimization algorithm
- Autores: Kurkov V.A.1,2, Chesalin D.D.1, Razjivin A.P.3, Shkirina U.A.1,3, Pishchalnikov R.Y.1
- 
							Afiliações: 
							- Prokhorov General Physics Institute of the Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
- Lomonosov Moscow State University
 
- Edição: Volume 43, Nº 12 (2024)
- Páginas: 40-52
- Seção: СТРОЕНИЕ ХИМИЧЕСКИХ СОЕДИНЕНИЙ, КВАНТОВАЯ ХИМИЯ, СПЕКТРОСКОПИЯ
- URL: https://kld-journal.fedlab.ru/0207-401X/article/view/684176
- DOI: https://doi.org/10.31857/S0207401X24120041
- ID: 684176
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Modeling of the optical response of photosynthetic pigments is an essential part of the study of fundamental physical processes of interaction of multi-atomic molecules with an external electromagnetic field. The use of semiclassical quantum theories in this case is more preferable than the use of ab initio methods for calculating the ground and excited states of a molecule, since semiclassical theories allow us to use characteristic functions, such as spectral density, to calculate absorption spectra rather than to take into account the full set of electron and atom configurations. The main disadvantage of this approach is the necessity of constant comparison of the calculated and experimental spectra and, as a consequence, the need to justify the uniqueness of the obtained parameters of the system under study and to evaluate their statistical significance. One of the possible options to significantly improve the quality of the optical response calculation is the use of a heuristic evolutionary optimization algorithm that minimizes the difference between the measured and theoretical spectra by determining the most appropriate set of model parameters. Using the spectra of photosynthetic pigments measured in different solvents as an example, we have shown that the modeling optimization not only allows us to obtain a good agreement between the calculated and experimental data, but also to unambiguously determine such parameters of the theory as the electron-phonon interaction coefficients for the electronic excited states of chlorophyll, lutein and β-carotene.
Texto integral
 
												
	                        Sobre autores
V. Kurkov
Prokhorov General Physics Institute of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
														Email: rpishchal@kapella.gpi.ru
				                					                																			                												                	Rússia, 							Moscow; Dolgoprudny						
D. Chesalin
Prokhorov General Physics Institute of the Russian Academy of Sciences
														Email: rpishchal@kapella.gpi.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Razjivin
Lomonosov Moscow State University
														Email: rpishchal@kapella.gpi.ru
				                					                																			                								
Belozersky Research Institute of Physico-Chemical Biology
Rússia, MoscowU. Shkirina
Prokhorov General Physics Institute of the Russian Academy of Sciences; Lomonosov Moscow State University
														Email: rpishchal@kapella.gpi.ru
				                					                																			                								
Department of Mechanics and Mathematics
Rússia, Moscow; MoscowR. Pishchalnikov
Prokhorov General Physics Institute of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: rpishchal@kapella.gpi.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Jang S. J., and Mennucci B. Rev. Mod. Phys. 90, 035003 (2018). https://doi.org/10.1103/RevModPhys.90.035003
- Mirkovic T., Ostroumov E. E., Anna J. M. et al. Chem. Rev. 117, 249 (2017). https://doi.org/10.1021/acs.chemrev.6b00002
- Gorokhov V.V., Knox P.P., Korvatovsky B.N. et al. Russ. J. Phys. Chem. B 17, 571 (2023). https://doi.org/10.1134/S199079312303020X
- Blankenship R.E. Molecular Mechanisms of Photosynthesis, 2nd ed., Wiley-Blackwell, Oxford, (2014).
- Renger T., Madjet M.E.A., Busch M.S.A. et al. Photosynth. Res. 116, 367 (2013). https://doi.org/10.1007/s11120-013-9893-3.
- Cherepanov D.A., Milanovsky G.E., Aybush A.V. et al. Russ. J. Phys. Chem. B 17, 584 (2023). https://doi.org/10.1134/S1990793123030181
- Renger T.J. Phys. Chem. B. 125, 6406 (2021). https://doi.org/10.1021/acs.jpcb.1c01479.
- Novoderezhkin V.I., Romero E., Dekker J.P. et al. ChemPhysChem. 12, 681 (2011). https://doi.org/10.1002/cphc.201000830.
- Bruggemann B., Sznee K., Novoderezhkin V. et al. J. Phys. Chem. B. 108, 13536 (2004). https://doi.org/10.1021/jp0401473
- Brixner T., Hildner R., Kohler J. et al. Adv. Energy Mater. 7, 1700236 (2017). https://doi.org/10.1002/aenm.201700236
- Croce R., and van Amerongen H. Nature Chemical Biology. 10, 492 (2014). https://doi.org/10.1038/nchembio.1555
- Cherepanov D.A., Milanovsky G.E., Nadtochenko V.A. et al. Russ. J. Phys. Chem. B 17, 594 (2023). https://doi.org/10.1134/S1990793123030193
- Nelson T.R., White A.J., Bjorgaard J.A. et al. Chem. Rev. 120, 2215 (2020). https://doi.org/10.1021/acs.chemrev.9b00447.
- Cremer D.. Pople J.A.J. Am. Chem. Soc. 97, 1354 (1975). https://doi.org/10.1021/ja00839a011
- Ditchfield R., Hehre W.J., Pople J.A.J. Chem. Phys. 54, 724 (1971). https://doi.org/10.1063/1.1674902
- Khrenova M.G., Polyakov I.V., Nemukhin A.V. Russ. J. Phys. Chem. B 16, 455 (2022). https://doi.org/10.1134/S1990793122030174
- Mukamel S. Principles of Nonlinear Optical Spectroscopy, Oxford University Press, New York, (1995).
- Chesalin D.D., Kulikov E.A., Yaroshevich I.A. et al. Swarm Evol. Comput. 75, 101210 (2022). https://doi.org/10.1016/j.swevo.2022.101210
- Storn R. IEEE Trans. Evol. Comput. 3, 22 (1999). https://doi.org/10.1109/4235.752918
- Storn R., Price K. J. Glob. Opt. 11, 341 (1997). https://doi.org/10.1023/A:1008202821328
- Opara K.R., Arabas J. Swarm Evol. Comput. 44, 546 (2019). https://doi.org/10.1016/j.swevo.2018.06.010
- Gudkov S.V., Sarimov R.M., Astashev M.E. et al. Phys. Usp. 67, 194 (2024). https://doi.org/10.3367/UFNe.2023.09.039577
- Pishchalnikov R.Y., Yaroshevich I.A., Zlenko D.V. et al. Photosynth. Res. 156, 3 (2023). https://doi.org/10.1007/s11120-022-00955-2
- Pishchalnikov R.Y., Yaroshevich I.A., Slastnikova T.A. et al. Phys. Chem. Chem. Phys. 21, 25707 (2019). https://doi.org/10.1039/c9cp04508b
- Balevičius V., Abramavicius D., Polívka T. J. Phys. Chem. Lett. 7, 3347 (2016). https://doi.org/10.1021/acs.jpclett.6b01455
- Uragami C., Saito K., Yoshizawa M., Molnar P. et al. Arch. Biochem. Biophys. 650, 49 (2018). https://doi.org/10.1016/j.abb.2018.04.021
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 






