The Impact of Water on Polylactide – Polybutylene Adipinate Terephthalate Blends
- 作者: Selezneva L.D.1,2, Podzorova M.V.1,2, Tertyshnaya Y.V.1,2, Romanov R.R.2, Popov A.A.1,2
-
隶属关系:
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- Plekhanov Russian University of Economics
- 期: 卷 43, 编号 3 (2024)
- 页面: 103-111
- 栏目: Chemical physics of polymeric materials
- URL: https://kld-journal.fedlab.ru/0207-401X/article/view/674978
- DOI: https://doi.org/10.31857/S0207401X24030116
- EDN: https://elibrary.ru/VFPQFC
- ID: 674978
如何引用文章
详细
Mixing in the melt followed by pressing, blends of polylactide — polybutylene adipate terephthalate of various compositions were obtained. The content of polybutylene adipate terephthalate in blends was 10, 20 and 30 wt. %. The effect of water on film samples at a temperature of 22 ± 2°C for 270 days was studied. After exposure to water, a change in morphology was detected: turbidity of the samples and the appearance of defects. The thermophysical characteristics before and after hydrolytic degradation were determined by differential scanning calorimetry. A decrease in the cold crystallization temperature in pure polylactide and with a low content of polybutylene adipate terephthalate, and the disappearance of the cold crystallization peak at a content of 20 and 30 wt. % of polybutylene adipate terephthalate were shown. The degree of crystallinity of polylactide after exposure to water tended to increase. Changes in the chemical structure of mixed samples were monitored by IR spectroscopy.
全文:

作者简介
L. Selezneva
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Plekhanov Russian University of Economics
编辑信件的主要联系方式.
Email: mariapdz@mail.ru
俄罗斯联邦, Moscow; Moscow
M. Podzorova
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Plekhanov Russian University of Economics
Email: mariapdz@mail.ru
俄罗斯联邦, Moscow; Moscow
Yu. Tertyshnaya
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Plekhanov Russian University of Economics
Email: mariapdz@mail.ru
俄罗斯联邦, Moscow; Moscow
R. Romanov
Plekhanov Russian University of Economics
Email: mariapdz@mail.ru
俄罗斯联邦, Moscow
A. Popov
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Plekhanov Russian University of Economics
Email: mariapdz@mail.ru
俄罗斯联邦, Moscow; Moscow
参考
- Tertyshnaya Y.V., Podzorova M.V. // 2021. V. 94(5). P. 639–646; https://doi.org/10.1134/S1070427221050128
- Zhou Q., Xanthos M. // Polym. Eng. Sci. 2010. V. 50. № 2. P. 320e330; https://doi.org/10.1002/pen.21520
- Tertyshnaya Y.V., Podzorova M.V., Khramkova A. // Russ. J. Phys. Chem B. 2023. V. 17(1). P. 163–170; https://doi.org/10.1134/S1990793123010098
- Olewnik-Kruszkowska E. // Polym. Degrad. Stab. 2016. V. 129. P. 87; https://doi.org/10.1016/j.polymdegradstab.2016.04.009
- Scaff aro R., Lopresti F., Botta L. // Eur. Polym. J. 2017. Vol. 96. P. 266; https://doi.org/10.1016/j.eurpolymj.2017.09.016
- Elsawya M.A., Kimc K.-H., Parkc J.-W., Deepb A. // Renew.Sust. Energ. Rev. 2017. V. 79. P. 1346; https://doi.org/10.1016/j.rser.2017.05.143
- Rapacz-Kmita A., Stodolak-Zych E., Szaraniec B., Gajek M., Dudek P. // Mater. Lett. 2015. V. 146. P. 73; https://doi.org/10.1515/adms-2016-0002
- Karpova S.G., Tertyshnaya Y.V., Podzorova M.V., Popov A.A. // Polym Sci Ser A. 2021. V. 63. P. 515;
- Varyan I.A., Kolesnikova N.N., Popov A.A. // Russ. J. Phys. Chem В. 2021. V. 15(6). P. 1041–1045; https://doi.org/10.1134/S1990793121060257
- Kij chavengkul T., Auras R., Rubino M. et al. // Polym. Degrad. Stab. 2010. V. 95. P. 2641; https://doi.org/10.1016/j.polymdegradstab.2010.07.018
- Zhang M., Jia H., Weng Y., Lia C. // Int. Biodeterior Biodegradation. 2019. V. 145. P. 104817; https://doi.org/10.1016/j.ibiod.2019.104817
- Nofar M., Heuzey M.C., Carreau P.J., Kamal M.R., Randall J. // J. Rheol. 2016. V. 60. P. 637; https://doi.org/10.1122/1.4953446
- Jian J., Xiangbin Z., Xianbo H. // Adv. Ind. Eng. Polym. Res. 2020. V. 3. № 1. P. 19; 10.1016/j.aiepr.2020.01.001' target='_blank'>https://doi: 10.1016/j.aiepr.2020.01.001
- Meaurio E., Zuza E., Sarasua J.R. // Macromolecules 2005. V. 38. № 22. P. 9221; https://doi.org/10.1021/ma051591m
- Kumara P.H.S., Nagasawa N., Yagi T., Tamada M. // J. Appl. Polym. Sci. 2008. V. 109. № 5. P. 3321; https://doi.org/10.1002/app.28402
- Zhao X., Hu H., Wang X. et al. // RSC Adv. 2020. V. 10. № 22. P. 13316; https://doi.org/10.1039/D0RA01801E
- Boudaoud N., Benali S., Mincheva R. et al. // Polym Int. 2018. V. 67. № 10. P. 1393; https://doi.org/10.1002/pi.5659
- Hocker S.J., Kim W.T., Schniepp H.C., Kranbuehl D.E. // Polymer. 2018. V. 158. P. 72; https://doi.org/10.1016/j.polymer.2018.10.031
- Bardin A., Gac P.Y. Le, Cérantola S. et al. // Polym. Degrad. Stab. 2020. V. 171. P. 109002; https://doi.org/10.1016/j.polymdegradstab.2019.109002
- Gorassi G., Pantani R. // Adv. Polym. Sci. 2016. P. 119; https://doi.org/10.1007/12_2016_12
- Tertyshnaya Y.V., Podzorova M.V., Varyan I.A. et al. // Polymers 2023. V. 15. P. 1029; https://doi.org/10.3390/polym15041029
- Kale B.G., Auras R., Singh S.P. // Packag. Technol. Sci. 2007. V. 20. P. 49; https://doi.org/10.1002/pts.742
补充文件
