Mechanisms of lipid-mediated regulation of the pore-forming activity of antimicrobial agents: studies on planar lipid bilayers
- Authors: Efimova S.S.1, Ostroumova O.S.1
-
Affiliations:
- Institute of Cytology, Russian Academy of Sciences
- Issue: Vol 41, No 5-6 (2024)
- Pages: 492-510
- Section: ОБЗОРЫ
- URL: https://kld-journal.fedlab.ru/0233-4755/article/view/667428
- DOI: https://doi.org/10.31857/S0233475524050107
- EDN: https://elibrary.ru/cbddvc
- ID: 667428
Cite item
Abstract
Planar lipid bilayers are unique tools designed for modeling cell membranes and electrophysiological studies of incorporated ion channels. Such model systems are designed to limit the number of components taking part in the functioning of biological membranes in order to characterize in detail the occurring processes under well-controlled experimental conditions. Planar lipid bilayers make it possible to record single events with a measured current of more than a tenth of a picoampere. The relative simplicity of the method, the ability to observe single molecular events, and the high reproducibility of the results obtained determines the unprecedented effectiveness of using planar lipid bilayers to identify key physical and chemical factors responsible for regulating the functioning of ion channels. This review represents an analysis of literature data concerning the mechanisms of lipid-associated regulation of ion channels formed by various antimicrobial agents. The examination allows us to consider the lipids as molecular chaperones that ensure the formation of pores in target membranes by antimicrobials.
Full Text

About the authors
S. S. Efimova
Institute of Cytology, Russian Academy of Sciences
Author for correspondence.
Email: efimova@incras.ru
Russian Federation, St. Petersburg, 194064
O. S. Ostroumova
Institute of Cytology, Russian Academy of Sciences
Email: efimova@incras.ru
Russian Federation, St. Petersburg, 194064
References
- Andreoli T.E. 1974. Planar lipid bilayer membranes. Methods Enzymol. 32, 513–539.
- Hanke W., Schlue W.-R. 1993. Biochemical preparations for planar lipid bilayer experiments. In: Planar Lipid Bilayers. Hanke W., Schlue W.-R. Elsevier: Academic press limited, p. 24–59.
- Mueller P., Rudin D.O., Tien H.Ti., Wescott W.С. 1962. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature. 194, 979–980. doi: 10.1038/194979a0
- Mueller P., Rudin D.O. 1986. Induced excitability in reconstituted cell membrane structure. J. Theoret. Biol. 4, 268–280.
- Tosaka T., Kamiya K. 2023. Function Investigations and Applications of membrane proteins on artificial lipid membranes. Int. J. Mol. Sci. 24 (8), 7231. doi: 10.3390/ijms24087231
- White S.H. 1978. Formation of “solvent-free” black lipid bilayer membranes from glyceryl monooleate dispersed in squalene. Biophys. J. 23 (3), 337–347. doi: 10.1016/S0006-3495(78)85453-8
- White S.H. 1974. Temperature-dependent structural changes in planar bilayer membranes: solvent “freeze-out”. Biochim. Biophys. Acta. 356 (1), 8–16. doi: 10.1016/0005-2736(74)90289-2
- Vodyanoy V., Murphy R.B. 1982. Solvent-free lipid bimolecular membranes of large surface area. Biochim. Biophys. Acta. 687 (2), 189–194. doi: 10.1016/0005-2736(82)90545-4
- Montal M., Mueller P. 1972. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. USA. 69 (12), 3561–3566. doi: 10.1073/pnas.69.12.3561
- Funakoshi K., Suzuki H., Takeuchi S. 2006. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal. Chem. 78 (24), 8169–8174. doi: 10.1021/ac0613479
- Oiki S., Iwamoto M. 2018. Lipid bilayers manipulated through monolayer technologies for studies of channel-membrane interplay. Biol. Pharm. Bull. 41 (3), 303–311. doi: 10.1248/bpb.b17-00708
- Coronado R., Latorre R. 1983. Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophys. J. 43 (2), 231–236. doi: 10.1016/S0006-3495(83)84343-4
- Sarges R., Witkop B. Gramicidin A. 1965. V. The structure of valine- and isoleucine-gramicidin A. J. Am. Chem. Soc. 87, 2011–2020. doi: 10.1021/ja01087a027
- Sarges R., Witkop B. Gramicidin A. 1965. VII. The structure of valine- and isoleucine-gramicidin B. J. Am. Chem. Soc. 87, 2027–2030. doi: 10.1021/ja01087a029
- Urry D.W. 1971. The gramicidin A transmembrane channel: a proposed pi(L,D) helix. Proc. Natl. Acad. Sci. USA. 68 (3), 672–676. doi: 10.1073/pnas.68.3.672
- Urry D.W., Long M.M., Jacobs M., Harris R.D. 1975. Conformation and molecular mechanisms of carriers and channels. Ann. N. Y. Acad. Sci. 264, 203–220. doi: 10.1111/j.1749-6632.1975.tb31484.x
- Veatch W.R., Fossel E.T., Blout E.R. 1974. The conformation of gramicidin A. Biochemistry. 13 (26), 5249–5256. doi: 10.1021/bi00723a001
- Hladky S.B., Haydon D.A. 1970. Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature. 225 (5231), 451–453. doi: 10.1038/225451a0
- Antonov V.F., Petrov V.V., Molnar A.A., Predvoditelev D.A., Ivanov A.S. 1980. The appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition temperature. Nature. 283 (5747), 585–586. doi: 10.1038/283585a0
- Elliott J.R., Needham D., Dilger J.P., Brandt O., Haydon D.A. 1985. A quantitative explanation of the effects of some alcohols on gramicidin single-channel lifetime. Biochim. Biophys. Acta. 814 (2), 401–404. doi: 10.1016/0005-2736(85)90462-6
- Krasne S., Eisenman G., Szabo G. 1971. Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin, and gramicidin. Science. 174 (4007), 412–415. doi: 10.1126/science.174.4007.412
- Roeske R.W., Hrinyo-Pavlina T.P., Pottorf R.S., Bridal T., Jin X.Z. Busath D. 1989. Synthesis and channel properties of [Tau 16]gramicidin A. Biochim. Biophys. Acta. 982 (2), 223–227. doi: 10.1016/0005-2736(89)90058-8
- O’Connell A.M., Koeppe R.E.2nd, Andersen O.S. 1990. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association. Science. 250 (4985), 1256–1259. doi: 10.1126/science.1700867
- Kelkar D.A., Chattopadhyay A. 2007. The gramicidin ion channel: a model membrane protein. Biochim. Biophys. Acta. 1768 (9), 2011-2025. doi: 10.1016/j.bbamem.2007.05.011.
- Sun Z., Barboiu M. 2019. Artificial Gramicidins. Front. Chem. 7, 611. doi: 10.3389/fchem.2019.00611.
- Myers V.B., Haydon D.A. 1972. Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity. Biochim. Biophys. Acta. 274 (2), 313–322. doi: 10.1016/0005-2736(72)90179-4
- Urban B.W., Hladky S.B., Haydon D.A. 1980. Ion movements in gramicidin pores. An example of single-file transport. Biochim. Biophys. Acta. 602 (2), 331–354. doi: 10.1016/0005-2736(80)90316-8
- Seoh S.A., Busath D. 1993. The permeation properties of small organic cations in gramicidin A channels. Biophys. J. 64 (4), 1017–1028. doi: 10.1016/S0006-3495(93)81467-X
- Bamberg E., Läuger P. 1977. Blocking of the gramicidin channel by divalent cations. J. Membr. Biol. 35, 351–375. doi: 10.1007/BF01869959
- Hemsley G., Busath D. 1991. Small iminium ions block gramicidin channels in lipid bilayers. Biophys. J. 59 (4), 901–907. doi: 10.1016/S0006-3495(91)82303-7
- Rudnev V.S., Ermishkin L.N., Rovin Iu.G. 1980. Effect of bilayer lipid membrane thickness, composition, and tension on gramicidin channel parameters. Biofizika. 25 (5), 857–858.
- Hwang T.C., Koeppe R.E.2nd, Andersen O.S. 2003.Genistein can modulate channel function by a phosphorylation-independent mechanism: Importance of hydrophobic mismatch and bilayer mechanics. Biochemistry. 42 (46), 13646–13658. doi: 10.1021/bi034887y
- Kolb H.A., Bamberg E. 1977. Influence of membrane thickness and ion concentration on the properties of the gramicidin a channel. Autocorrelation, spectral power density, relaxation and single-channel studies. Biochim. Biophys. Acta. 464 (1), 127–141. doi: 10.1016/0005-2736(77)90376-5
- de Groot B.L., Tieleman D.P., Pohl P., Grubmüller H. 2002. Water permeation through gramicidin A: Desformylation and the double helix: A molecular dynamics study. Biophys. J. 82 (6), 2934–2942. doi: 10.1016/S0006-3495(02)75634-8
- Weinrich M., Worcester D.L., Bezrukov S.M. 2017. Lipid nanodomains change ion channel function. Nanoscale. 9 (35), 13291–13297. doi: 10.1039/c7nr03926c
- Lundbaek J.A., Andersen O.S. 1994. Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J. Gen. Physiol. 104 (4), 645–673. doi: 10.1085/jgp.104.4.645
- Bezrukov S.M. 2000. Functional consequences of lipid packing stress Cur. Opin. Colloid Inter. Sci. 5 (3–4), 237–243. doi: 10.1016/S1359-0294(00)00061-3
- Rostovtseva T.K., Weinrich M., Jacobs D., Rosencrans W.M., Bezrukov S.M. 2024. Dimeric tubulin modifies mechanical properties of lipid bilayer, as probed using gramicidin A channel. Int. J. Mol. Sci. 25 (4), 2204. doi: 10.3390/ijms25042204
- Rostovtseva T.K., Aguilella V.M., Vodyanoy I., Bezrukov S.M., Parsegian V.A. 1998. Membrane surface-charge titration probed by gramicidin A channel conductance. Biophys. J. 75 (4), 1783–1792. doi: 10.1016/S0006-3495(98)77620-9
- Rostovtseva T.K., Petrache H.I., Kazemi N., Hassanzadeh E., Bezrukov S.M. 2008. Interfacial polar interactions affect gramicidin channel kinetics. Biophys. J. 94 (4), L23-25. doi: 10.1529/biophysj.107.120261
- Rokitskaya T.I., Antonenko Y.N., Kotova E.A. 1997. Effect of the dipole potential of a bilayer lipid membrane on gramicidin channel dissociation kinetics. Biophys. J. 73 (2), 850–854. doi: 10.1016/S0006-3495(97)78117-7
- Duffin R.L., Garrett M.P., Flake K.B., Durrant J.D., Busath D.D. 2003. Modulation of lipid bilayer interfacial dipole potential by phloretin, RH421, and 6-ketocholestanol as probed by gramicidin channel conductance. Langmuir. 19, 1439–1442. doi: 10.1021/la025892q
- Efimova S.S., Zakharova A.A., Ostroumova O.S. 2020. Alkaloids modulate the functioning of ion channels produced by antimicrobial agents via an influence on the lipid host. Front. Cell Dev. Biol. 8, 537. doi: 10.3389/fcell.2020.00537
- Efimova S.S., Ostroumova O.S. 2021. Is the membrane lipid matrix a key target for action of pharmacologically active plant saponins? Int. J. Mol. Sci. 22 (6), 3167. doi: 10.3390/ijms22063167
- Sawyer D.B., Williams L.P., Whaley W.L., Koeppe R.E.2nd, Andersen O.S. 1990. Gramicidins A, B, and C form structurally equivalent ion channels. Biophys. J. 58 (5), 1207–1212. doi: 10.1016/S0006-3495(90)82461-9
- Williams L.P., Narcessian E.J., Andersen O.S., Waller G.R., Taylor M.J., Lazenby J.P., Hinton J.F., Koeppe R.E.2nd. 1992. Molecular and channel-forming characteristics of gramicidin K’s: A family of naturally occurring acylated gramicidins. Biochemistry. 31 (32), 7311–7319. doi: 10.1021/bi00147a015
- Mueller P., Rudin D. 1968. Action potentials induced in biomolecular lipid membranes. Nature. 217, 713–719.doi: 10.1038/217713a0
- Menestrina G., Voges K.P., Jung G., Boheim G. 1986. Voltage-dependent channel formation by rods of helical polypeptides. J. Membr. Biol. 93 (2), 111–132. doi: 10.1007/BF01870804
- Duclohier H., Molle G., Dugast J.Y., Spach G. 1992. Prolines are not essential residues in the “barrel-stave” model for ion channels induced by alamethicin analogues. Biophys. J. 63 (3), 868–873. doi: 10.1016/S0006-3495(92)81637-5
- Rink T., Bartel H., Jung G., Bannwarth W., Boheim G. 1994. Effects of polycations on ion channels formed by neutral and negatively charged alamethicins. Eur. Biophys. J. 23 (3), 155–165. doi: 10.1007/BF01007607
- Molle G., Dugast J.Y., Spach G., Duclohier H. 1996. Ion channel stabilization of synthetic alamethicin analogs by rings of inter-helix H-bonds. Biophys. J. 70 (4), 1669–1675. doi: 10.1016/S0006-3495(96)79729-1
- Asami K., Okazaki T., Nagai Y., Nagaoka Y. 2002. Modifications of alamethicin ion channels by substitution of Glu-7 for Gln-7. Biophys. J. 83 (1), 219–228. doi: 10.1016/S0006-3495(02)75163-1
- Boheim G., Hanke W., Jung G. 1983. Alamethicin pore formation: Voltage-dependent flip-flop of α-helix dipoles. Biophys. Struct. Mechan. 9, 181–191.
- Luchian T., Mereuta L. 2006. Phlorizin- and 6-ketocholestanol-mediated antagonistic modulation of alamethicin activity in phospholipid planar membranes. Langmuir. 22 (20), 8452–8457. doi: 10.1021/la0613777
- Stankowski S., Schwarz U.D., Schwarz G. 1988. Voltage-dependent pore activity of the peptide alamethicin correlated with incorporation in the membrane: Salt and cholesterol effects. Biochim. Biophys. Acta. 941 (1), 11–18. doi: 10.1016/0005-2736(88)90208-8
- Aguilella V.M., Bezrukov S.M. 2001. Alamethicin channel conductance modified by lipid charge. Eur. Biophys. J. 30 (4), 233–241. doi: 10.1007/s002490100145
- Duclohier H., Alder G., Kociolek K., Leplawy M.T. 2003. Channel properties of template assembled alamethicin tetramers. J. Pept. Sci. 9 (11–12), 776–783. doi: 10.1002/psc.523
- Apetrei A., Mereuta L., Luchian T. 2009. The RH 421 styryl dye induced, pore model-dependent modulation of antimicrobial peptides activity in reconstituted planar membranes. Biochim. Biophys. Acta. 1790 (8), 809–816. doi: 10.1016/j.bbagen.2009.04.002
- Balaram P., Krishna K., Sukumar M., Mellor I.R., Sansom M.S. 1992. The properties of ion channels formed by zervamicins. Eur. Biophys. J. 21 (2), 117–128. doi: 10.1007/BF00185426
- Molle G., Duclohier H., Spach G. 1987. Voltage-dependent and multi-state ionic channels induced by trichorzianines, anti-fungal peptides related to alamethicin. FEBS Lett. 224 (1), 208–212. doi: 10.1016/0014-5793(87)80449-0
- Duval D., Cosette P., Rebuffat S., Duclohier H., Bodo B., Molle G. 1998. Alamethicin-like behaviour of new 18-residue peptaibols, trichorzins PA. Role of the C-terminal amino-alcohol in the ion channel forming activity. Biochim. Biophys. Acta. 1369 (2), 309–319. doi: 10.1016/s0005-2736(97)00235-6
- Koide N., Asami K., Fujita T. 1997. Ion-channels formed by hypelcins, antibiotic peptides, in planar bilayer lipid membranes. Biochim. Biophys. Acta. 1326 (1), 47–53. doi: 10.1016/s0005-2736(97)00005-9
- Shenkarev Z.O., Balashova T.A., Efremov R.G., Yakimenko Z.A., Ovchinnikova T.V., Raap J., Arseniev A.S. 2002. Spatial structure of zervamicin IIB bound to DPC micelles: implications for voltage-gating. Biophys. J. 82 (2), 762–771. doi: 10.1016/S0006-3495(02)75438-6
- Rebuffat S., Duclohier H., Auvin-Guette C., Molle G., Spach G., Bodo B. 1992. Membrane-modifying properties of the pore-forming peptaibols saturnisporin SA IV and harzianin HA V. FEMS Microbiol. Immunol. 5 (1–3), 151–160. doi: 10.1111/j.1574-6968.1992.tb05886.x
- Duclohier H., Alder G.M., Bashford C.L., Brückner H., Chugh J.K., Wallace B.A. 2004. Conductance studies on trichotoxin_A50E and implications for channel structure. Biophys. J. 87 (3), 1705–1710. doi: 10.1529/biophysj.104.040659
- Duclohier H., Snook C.F., Wallace B.A. 1998. Antiamoebin can function as a carrier or as a pore-forming peptaibol. Biochim. Biophys. Acta. 1415 (1), 255–260. doi: 10.1016/s0005-2736(98)00184-9
- Duclohier H. 2004. Helical kink and channel behaviour: A comparative study with the peptaibols alamethicin, trichotoxin and antiamoebin. Eur. Biophys. J. 33 (3), 169–174. doi: 10.1007/s00249-003-0383-y
- Bessin Y., Saint N., Marri L., Marchini D., Molle G. 2004. Antibacterial activity and pore-forming properties of ceratotoxins: A mechanism of action based on the barrel stave model. Biochim. Biophys. Acta. 1667 (2), 148–156. doi: 10.1016/j.bbamem.2004.09.011
- Saint N., Marri L., Marchini D., Molle G. 2003. The antibacterial peptide ceratotoxin A displays alamethicin-like behavior in lipid bilayers. Peptides. 24 (11), 1779–1784. doi: 10.1016/j.peptides.2003.09.015
- Christensen B., Fink J., Merrifield R.B., Mauzerall D. 1988. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Natl. Acad. Sci. USA. 85 (14), 5072–5076. doi: 10.1073/pnas.85.14.5072
- Efimova S.S., Schagina L.V., Ostroumova O.S. 2014. Channel-forming activity of cecropins in lipid bilayers: Effect of agents modifying the membrane dipole potential. Langmuir. 30 (26), 7884–7892. doi: 10.1021/la501549v
- Tosteson M.T., Alvarez O., Hubbell W., Bieganski R.M., Attenbach C., Caporales L.H., Levy J.J., Nutt R.F., Rosenblatt M., Tosteson D.C. 1990. Primary structure of peptides and ion channels. Role of amino acid side chains in voltage gating of melittin channels. Biophys. J. 58 (6), 1367–1375. doi: 10.1016/S0006-3495(90)82483-8
- Manna M., Mukhopadhyay C. 2009. Cause and effect of melittin-induced pore formation: a computational approach. Langmuir. 25 (20), 12235–12242. doi: 10.1021/la902660q
- Leveritt J.M.3rd, Pino-Angeles A., Lazaridis T. 2015. The structure of a melittin-stabilized pore. Biophys. J. 108 (10), 2424–2426. doi: 10.1016/j.bpj.2015.04.006
- Yang L., Harroun T.A., Weiss T.M., Ding L., Huang H.W. 2001. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 81 (3), 1475–1485. doi: 10.1016/S0006-3495(01)75802-X
- Wade D., Boman A., Wåhlin B., Drain C.M., Andreu D., Boman H.G., Merrifield R.B. 1990. All-D amino acid-containing channel-forming antibiotic peptides. Proc. Natl. Acad. Sci. USA. 87 (12), 4761–4765. doi: 10.1073/pnas.87.12.4761
- Juvvadi P., Vunnam S., Merrifield E.L., Boman H.G., Merrifield R.B. 1996. Hydrophobic effects on antibacterial and channel-forming properties of cecropin A-melittin hybrids. J. Pept. Sci. 2 (4), 223–232. doi: 10.1002/psc.63
- Duclohier H., Molle G., Spach G. 1989. Antimicrobial peptide magainin I from Xenopus skin forms anion-permeable channels in planar lipid bilayers. Biophys. J. 56 (5), 1017–1021. doi: 10.1016/S0006-3495(89)82746-8
- Gallucci E., Meleleo D., Micelli S., Picciarelli V. 2003. Magainin 2 channel formation in planar lipid membranes: The role of lipid polar groups and ergosterol. Eur. Biophys. J. 32 (1), 22–32. doi: 10.1007/s00249-002-0262-y
- Cruciani R.A., Barker J.L., Durell S.R., Raghunathan G., Guy H.R., Zasloff M., Stanley E.F. 1992. Magainin 2, a natural antibiotic from frog skin, forms ion channels in lipid bilayer membranes. Eur. J. Pharmacol. 226 (4), 287–296. doi: 10.1016/0922-4106(92)90045-w
- Ludtke S.J., He K., Heller W.T., Harroun T.A., Yang L., Huang H.W. 1996. Membrane pores induced by magainin. Biochemistry. 35 (43), 13723–13728. doi: 10.1021/bi9620621
- Matsuzaki K., Nakamura A., Murase O., Sugishita K., Fujii N., Miyajima K. 1997. Modulation of magainin 2-lipid bilayer interactions by peptide charge. Biochemistry. 36 (8), 2104–2111. doi: 10.1021/bi961870p.
- Allende D., Simon S.A., McIntosh T.J. 2005. Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Biophys. J. 88, 1828–1837. doi: 10.1529/biophysj.104.049817
- Matsuzaki K., Sugishita K., Ishibe N., Ueha M., Nakata S., Miyajima K., Epand R.M. 1998. Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry. 37 (34), 11856–11863. doi: 10.1021/bi980539y
- Watanabe H., Kawano R. 2016. Channel current analysis for pore-forming properties of an antimicrobial peptide, magainin 1, using the droplet contact method. Anal. Sci. 32 (1), 57–60. doi: 10.2116/analsci.32.57
- Duclohier H. 2006. Bilayer lipid composition modulates the activity of dermaseptins, polycationic antimicrobial peptides. Eur. Biophys. J. 35 (5), 401–409. doi: 10.1007/s00249-006-0047-9
- Saint N., Cadiou H., Bessin Y., Molle G. 2002. Antibacterial peptide pleurocidin forms ion channels in planar lipid bilayers. Biochim. Biophys. Acta. 1564 (2), 359–364. doi: 10.1016/s0005-2736(02)00470-4
- Kagan B.L., Selsted M.E., Ganz T., Lehrer R.I. 1990. Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc. Natl. Acad. Sci. USA. 87 (1), 210–214. doi: 10.1073/pnas.87.1.210
- Kagan B.L., Ganz T., Lehrer R.I. 1994. Defensins: A family of antimicrobial and cytotoxic peptides. Toxicology. 87 (1–3), 131–149. doi: 10.1016/0300-483x(94)90158-9
- Salay L.C., Procopio J., Oliveira E., Nakaie C.R., Schreier S. 2004. Ion channel-like activity of the antimicrobial peptide tritrpticin in planar lipid bilayers. FEBS Lett. 565 (1–3), 171–175. doi: 10.1016/j.febslet.2004.03.093
- Capone R., Mustata M., Jang H., Arce F.T., Nussinov R., Lal R. 2010. Antimicrobial protegrin-1 forms ion channels: Molecular dynamic simulation, atomic force microscopy, and electrical conductance studies. Biophys. J. 98 (11), 2644–2652. doi: 10.1016/j.bpj.2010.02.024
- Sokolov Y., Mirzabekov T., Martin D.W., Lehrer R.I., Kagan B.L. 1999. Membrane channel formation by antimicrobial protegrins. Biochim. Biophys. Acta. 1420 (1–2), 23–29. doi: 10.1016/s0005-2736(99)00086-3
- Gross E., Morell J.L. 1971. The structure of nisin. J. Am. Chem. Soc. 93 (18), 4634–4635. doi: 10.1021/ja00747a073
- Scherer K.M., Spille J.H., Sahl H.G., Grein F., Kubitscheck U. 2015. The lantibiotic nisin induces lipid II aggregation, causing membrane instability and vesicle budding. Biophys. J. 108 (5), 1114–1124. doi: 10.1016/j.bpj.2015.01.020
- Wiedemann I., Breukink E., van Kraaij C., Kuipers O.P., Bierbaum G., de Kruijff B., Sahl H.G. 2001. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem. 276 (3), 1772–1779. doi: 10.1074/jbc.M006770200
- Brötz H., Josten M., Wiedemann I., Schneider U., Götz F., Bierbaum G., Sahl H.G. 1998. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol. Microbiol. 30 (2), 317–327. doi: 10.1046/j.1365-2958.1998.01065.x
- Breukink E., Wiedemann I., van Kraaij C., Kuipers O.P., Sahl H.G., de Kruijff B. 1999. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science. 286 (5448), 2361–2364. doi: 10.1126/science.286.5448.2361
- Wiedemann I., Benz R., Sahl H.G. 2004. Lipid II-mediated pore formation by the peptide antibiotic nisin: a black lipid membrane study. J. Bacteriol. 186 (10), 3259–3261. doi: 10.1128/JB.186.10.3259-3261.2004
- Sahl H.G., Kordel M., Benz R. 1987. Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin. Arch. Microbiol. 149 (2), 120–124. doi: 10.1007/BF00425076
- Giffard C.J., Dodd H.M., Horn N., Ladha S., Mackie A.R., Parr A., Gasson M.J., Sanders D. 1997. Structure-function relations of variant and fragment nisins studied with model membrane systems. Biochemistry. 36 (13), 3802–3810. doi: 10.1021/bi962506t
- Chernyshova D.N., Tyulin A.A., Ostroumova O.S., Efimova S.S. 2022. Discovery of the potentiator of the pore-forming ability of lantibiotic nisin: Perspectives for anticancer therapy. Membranes. 12 (11), 1166. doi: 10.3390/membranes12111166
- Efimova S.S., Shekunov E.V., Chernyshova D.N., Zakharova A.A., Ostroumova O.S. 2022. The dependence of the channel-forming ability of lantibiotics on the lipid composition of the membranes. Biochem. (Moscow), Suppl. Ser. A: Membr. Cell Biol. 16, 144–150. doi: 10.1134/s1990747822020039
- Maget-Dana R., Peypoux F. 1994. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology. 87 (1–3), 151–174. doi: 10.1016/0300-483x(94)90159-7
- Bonmatin J.M., Laprévote O., Peypoux F. 2003. Diversity among microbial cyclic lipopeptides: Iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb. Chem. High Throughput Screen. 6 (6), 541–556. doi: 10.2174/138620703106298716
- Koumoutsi A., Chen X.H., Henne A., Liesegang H., Hitzeroth G., Franke P., Vater J., Borriss R. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186 (4), 1084–1096. doi: 10.1128/JB.186.4.1084-1096.2004
- Huszcza E., Burczyk B. 2006. Surfactin isoforms from Bacillus coagulans. Z. Naturforsch. C. J. Biosci. 61 (9–10), 727–733. doi: 10.1515/znc-2006-9-1020
- Kim P.I., Bai H., Bai D., Chae H., Chung S., Kim Y., Park R., Chi Y.T. 2004. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Appl. Microbiol. 97 (5), 942–949. doi: 10.1111/j.1365-2672.2004.02356.x
- Tsuge K., Ano T., Hirai M., Nakamura Y., Shoda M. 1999. The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob. Agents Chemother. 43 (9), 2183–2192. doi: 10.1128/AAC.43.9.2183
- Maget-Dana R., Heitz F., Ptak M., Peypoux F., Guinand M. 1985. Bacterial lipopeptides induce ion-conducting pores in planar bilayers. Biochem. Biophys. Res. Commun. 129 (3), 965–971. doi: 10.1016/0006-291x(85)91985-0
- Maget-Dana R., Ptak M., Peypoux F., Michel G. 1985. Pore-forming properties of iturin A, a lipopeptide antibiotic. Biochim. Biophys. Acta. 815 (3), 405–409. doi: 10.1016/0005-2736(85)90367-0
- Maget-Dana R., Ptak M. 1990. Iturin lipopeptides: Interactions of mycosubtilin with lipids in planar membranes and mixed monolayers. Biochim. Biophys Acta. 1023 (1), 34–40. doi: 10.1016/0005-2736(90)90006-a
- Sheppard J.D., Jumarie C., Cooper D.G., Laprade R. 1991. Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochim. Biophys. Acta. 1064 (1), 13–23. doi: 10.1016/0005-2736(91)90406-x
- Ostroumova O.S., Malev V.V., Ilin M.G., Schagina L.V. 2010. Surfactin activity depends on the membrane dipole potential. Langmuir. 26 (19), 15092–15097. doi: 10.1021/la102691y
- Zakharova A.A., Efimova S.S., Malev V.V., Ostroumova O.S. 2019. Fengycin induces ion channels in lipid bilayers mimicking target fungal cell membranes. Sci. Rep. 9 (1), 16034. doi: 10.1038/s41598-019-52551-5
- Cho K.H., Kim Y.K. 2003. Two types of ion channel formation of tolaasin, a Pseudomonas peptide toxin. FEMS Microbiol. Lett. 221 (2), 221–226. doi: 10.1016/S0378-1097(03)00182-4
- Takemoto J.Y. 1992. Bacterial phytotoxin syringomycin and its interaction with host membranes. In: Molecular signals in plant-microbe communication. Verma D.P.S. Boca Raton, Fla: CRC Press, p. 247–260.
- Feigin A.M., Takemoto J.Y., Wangspa R., Teeter J.H., Brand J.G. 1996. Properties of voltage-gated ion channels formed by syringomycin E in planar lipid bilayers. J. Membr. Biol. 149 (1), 41–47. doi: 10.1007/s002329900005
- Schagina L.V., Kaulin Y.A., Feigin A.M., Takemoto J.Y., Brand J.G., Malev V.V. 1998. Properties of ionic channels formed by the antibiotic syringomycin E in lipid bilayers: Dependence on the electrolyte concentration in the bathing solution. Membr. Cell Biol. 12 (4), 537–555.
- Kaulin Y.A., Schagina L.V., Bezrukov S.M., Malev V.V., Feigin A.M., Takemoto J.Y., Teeter J.H., Brand J.G. 1998. Cluster organization of ion channels formed by the antibiotic syringomycin E in bilayer lipid membranes. Biophys. J. 74 (6), 2918–2925. doi: 10.1016/S0006-3495(98)77999-8
- Ostroumova O.S., Malev V.V., Kaulin Y.A., Gurnev P.A., Takemoto J.Y., Schagina L.V. 2005. Voltage-dependent synchronization of gating of syringomycin E ion channels. FEBS Lett. 579 (25), 5675–5679. doi: 10.1016/j.febslet.2005.08.087
- Malev V.V., Schagina L.V., Gurnev P.A., Takemoto J.Y., Nestorovich E.M., Bezrukov S.M. 2002. Syringomycin E channel: a lipidic pore stabilized by lipopeptide? Biophys. J. 82 (4), 1985–1994. doi: 10.1016/S0006-3495(02)75547-1
- Ostroumova O.S., Gurnev P.A., Schagina L.V., Bezrukov S.M. 2007. Asymmetry of syringomycin E channel studied by polymer partitioning. FEBS Lett. 581 (5), 804–808. doi: 10.1016/j.febslet.2007.01.063
- Schagina L.V., Gurnev P.A., Takemoto J.Y., Malev V.V. 2003. Effective gating charge of ion channels induced by toxin syringomycin E in lipid bilayers. Bioelectrochemistry. 60 (1–2), 21–27. doi: 10.1016/s1567-5394(03)00041-0
- Ostroumova O.S., Kaulin Y.A., Gurnev P.A., Schagina L.V. 2007. Effect of agents modifying the membrane dipole potential on properties of syringomycin E channels. Langmuir. 23 (13), 6889–6892. doi: 10.1021/la7005452
- Zakharova A.A., Efimova S.S., Schagina L.V., Malev V.V., Ostroumova O.S. 2018. Blocking ion channels induced by antifungal lipopeptide syringomycin E with amide-linked local anesthetics. Sci. Rep. 8 (1), 11543. doi: 10.1038/s41598-018-30077-6
- Agner G., Kaulin Y.A., Gurnev P.A., Szabo Z., Schagina L.V., Takemoto J.Y., Blasko K. 2000. Membrane-permeabilizing activities of cyclic lipodepsipeptides, syringopeptin 22A and syringomycin E from Pseudomonas syringae pv. syringae in human red blood cells and in bilayer lipid membranes. Bioelectrochemistry. 52 (2), 161–167. doi: 10.1016/s0302-4598(00)00098-2
- Dalla Serra M., Bernhart I., Nordera P., Di Giorgio D., Ballio A., Menestrina G. 1999. Conductive properties and gating of channels formed by syringopeptin 25A, a bioactive lipodepsipeptide from Pseudomonas syringae pv. syringae, in planar lipid membranes. Mol. Plant. Microbe Interact. 12 (5), 401–409. doi: 10.1094/MPMI.1999.12.5.401
- Carpaneto A., Dalla Serra M., Menestrina G., Fogliano V., Gambale F. 2002. The phytotoxic lipodepsipeptide syringopeptin 25A from Pseudomonas syringae pv syringae forms ion channels in sugar beet vacuoles. J. Membr. Biol. 188 (3), 237–248. doi: 10.1007/s00232-001-0187-x
- Gur’nev F.A., Kaulin Iu.A., Tikhomirova A.V., Wangspa R., Takemoto D., Malev V.V., Shchagina L.V. 2002. Activity of toxins produced by Pseudomonas syringae pv. syringae in model and cell membranes. Tsitologiia. 44 (3), 296–304.
- Bensaci M.F., Gurnev P.A., Bezrukov S.M., Takemoto J.Y. 2011. Fungicidal activities and mechanisms of action of Pseudomonas syringae pv. syringae lipodepsipeptide syringopeptins 22A and 25A. Front. Microbiol. 2, 216. doi: 10.3389/fmicb.2011.00216
- David S.A., Balasubramanian K.A., Mathan V.I., Balaram P. 1992. Analysis of the binding of polymyxin B to endotoxic lipid A and core glycolipid using a fluorescent displacement probe. Biochim. Biophys. Acta. 1165 (2), 147–152. doi: 10.1016/0005-2760(92)90180-4
- Mares J., Kumaran S., Gobbo M., Zerbe O. 2009. Interactions of lipopolysaccharide and polymyxin studied by NMR spectroscopy. J. Biol. Chem. 284 (17), 11498–11506. doi: 10.1074/jbc.M806587200
- Moore R.A., Bates N.C., Hancock R.E. 1986. Interaction of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansyl-polymyxin. Antimicrob. Agents Chemother. 29 (3), 496–500. doi: 10.1128/AAC.29.3.496
- Kendig J.J., Erickson N., Galla H.J. 1980. Interaction of polymyxin with vertebrate peripheral nerve axons. Biochem. Biophys. Res. Commun. 97 (1), 75–80. doi: 10.1016/s0006-291x(80)80136-7
- Schröder G., Brandenburg K., Seydel U. 1992. Polymyxin B induces transient permeability fluctuations in asymmetric planar lipopolysaccharide/phospholipid bilayers. Biochemistry. 31 (3), 631–638. doi: 10.1021/bi00118a001
- Zakharova A.A., Efimova S.S., Ostroumova O.S. 2022. Lipid Microenvironment modulates the pore-forming ability of polymyxin B. Antibiotics. 11 (10), 1445. doi: 10.3390/antibiotics11101445
- Seydlová G., Sokol A., Lišková P., Konopásek I., Fišer R. 2018. Daptomycin pore formation and stoichiometry depend on membrane potential of target membrane. Antimicrob. Agents Chemother. 63 (1), e01589-18. doi: 10.1128/AAC.01589-18
- Zhang T., Muraih J.K., Tishbi N., Herskowitz J., Victor R.L., Silverman J., Uwumarenogie S., Taylor S.D., Palmer M., Mintzer E. 2014. Cardiolipin prevents membrane translocation and permeabilization by daptomycin. J. Biol. Chem. 289 (17), 11584–11591. doi: 10.1074/jbc.M114.554444
- Tyurin A.P., Alferova V.A., Paramonov A.S., Shuvalov M.V., Kudryakova G.K., Rogozhin E.A., Zherebker A.Y., Brylev V.A., Chistov A.A., Baranova A.A., Biryukov M.V., Ivanov I.A., Prokhorenko I.A., Grammatikova N.E., Kravchenko T.V., Isakova E.B., Mirchink E.P., Gladkikh E.G., Svirshchevskaya E.V., Mardanov A.V., Beletsky A.V., Kocharovskaya M.V., Kulyaeva V.V., Shashkov A.S., Tsvetkov D.E., Nifantiev N.E., Apt A.S., Majorov K.B., Efimova S.S., Ravin N.V., Nikolaev E.N., Ostroumova O.S., Katrukha G.S., Lapchinskaya O.A., Dontsova O.A., Terekhov S.S., Osterman I.A., Shenkarev Z.O., Korshun V.A. 2021. Gausemycins A,B: Cyclic lipoglycopeptides from Streptomyces sp.*. Angew. Chem. Int. Ed. Engl. 60 (34), 18694–18703. doi: 10.1002/anie.202104528
- Kravchenko T.V., Paramonov A.S., Kudzhaev A.M., Efimova S.S., Khorev A.S., Kudryakova G.K., Ivanov I.A., Chistov A.A., Baranova A.A., Krasilnikov M.S., Lapchinskaya O.A., Tyurin A.P., Ostroumova O.S., Smirnov I.V., Terekhov S.S., Dontsova O.A., Shenkarev Z.O., Alferova V.A., Korshun V.A. 2024. Gausemycin antibiotic family acts via Ca2+-dependent membrane targeting. J. Nat. Prod. 87 (4), 664–674. doi: 10.1021/acs.jnatprod.3c00612
- Craven P.C., Gremillion D.H. 1985. Risk factors of ventricular fibrillation during rapid amphotericin B infusion. Antimicrob. Agents Chemother. 27 (5), 868–871. doi: 10.1128/AAC.27.5.868
- Shigemi R., Fukuda M., Suzuki Y., Morimoto T., Ishii E. 2011. L-arginine is effective in stroke-like episodes of MELAS associated with the G13513A mutation. Brain Dev. 33 (6), 518–520. doi: 10.1016/j.braindev.2010.07.013
- Andreoli T.E. 1974. The structure and function of amphotericin B-cholesterol pores in lipid bilayer membranes. Ann. N. Y. Acad. Sci. 235, 448–468. doi: 10.1111/j.1749-6632.1974.tb43283.x
- Anderson T.M., Clay M.C., Cioffi A.G., Diaz K.A., Hisao G.S. Tuttle M.D., Nieuwkoop A.J., Comellas G., Maryum N., Wang S., Uno B.E., Wildeman E.L., Gonen T., Rienstra C.M., Burke M.D. 2014. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat. Chem. Biol. 10 (5), 400–406. doi: 10.1038/nchembio.1496
- Gray K.C., Palacios D.S., Dailey I., Endo M.M., Uno B.E., Wilcock B.C., Burke M.D. 2012. Amphotericin primarily kills yeast by simply binding ergosterol. Proc. Natl. Acad. Sci. USA. 109 (7), 2234–2239. doi: 10.1073/pnas.1117280109
- Ermishkin L.N., Kasumov K.M., Potzeluyev V.M. 1976. Single ionic channels induced in lipid bilayers by polyene antibiotics amphotericin B and nystatine. Nature. 262 (5570), 698–699. doi: 10.1038/262698a0
- Касумов Х.М. 2009. Структура и мембранная функция полиеновых макролидных антибиотиков. М.: Наука. 512 с.
- Shi Y.L., Wang W.P., Zou Y.C. Ionic channels formed in the lipid bilayer membranes by aureofuscin, a polyene antibiotics. Sheng Li Xue Bao. 1991. 43 (2), 128–133.
- Grigoriev P.A., Schlegel R., Gräfe U. 2001. Cation selective ion channels formed by macrodiolide antibiotic elaiophylin in lipid bilayer membranes. Bioelectrochemistry. 54 (1), 11–15. doi: 10.1016/s0302-4598(01)00102-7
- Kasumov Kh.M., Karakozov S.D. 1985. Effect of amphotericin B added to one side of a membrane. Biofizika.(Rus.). 30 (2), 281–284.
- Kleinberg M.E., Finkelstein A. 1984. Single-length and double-length channels formed by nystatin in lipid bilayer membranes. J. Membr. Biol. 80 (3), 257–269. doi: 10.1007/BF01868444.
- Umegawa Y., Yamamoto T., Dixit M., Funahashi K., Seo S., Nakagawa Y., Suzuki T., Matsuoka S., Tsuchikawa H., Hanashima S., Oishi T., Matsumori N., Shinoda W., Murata M. 2022. Amphotericin B assembles into seven-molecule ion channels: An NMR and molecular dynamics study. Sci. Adv. 8 (24), eabo2658. doi: 10.1126/sciadv.abo2658
- Borisova M.P., Brutyan R.A., Ermishkin L.N. 1986. Mechanism of anion-cation selectivity of amphotericin B channels. J. Membr. Biol. 90 (1), 13–20. doi: 10.1007/BF01869681.
- Marty A., Finkelstein A. 1975. Pores formed in lipid bilayer membranes by nystatin, differences in its one-sided and two-sided action. J. Gen. Physiol. 65 (4), 515–526. doi: 10.1085/jgp.65.4.515
- Brutyan R.A., McPhie P. 1996. On the one-sided action of amphotericin B on lipid bilayer membranes. J. Gen. Physiol. 107 (1), 69–78. doi: 10.1085/jgp.107.1.69
- Ostroumova O.S., Efimova S.S., Schagina L.V. 2012. Probing amphotericin B single channel activity by membrane dipole modifiers. PLoS One. 7 (1), e30261. doi: 10.1371/journal.pone.0030261
- Ostroumova O.S., Efimova S.S., Chulkov E.G., Schagina L.V. 2012. The interaction of dipole modifiers with polyene-sterol complexes. PLoS One. 7 (9), e45135. doi: 10.1371/journal.pone.0045135
- Bolard J. 1986. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim. Biophys. Acta. 864 (3–4), 257–304. doi: 10.1016/0304-4157(86)90002-x
- Chulkov E.G., Schagina L.V., Ostroumova O.S. 2015. Membrane dipole modifiers modulate single-length nystatin channels via reducing elastic stress in the vicinity of the lipid mouth of a pore. Biochim. Biophys. Acta. 1848 (1 Pt A), 192–199. doi: 10.1016/j.bbamem.2014.09.004
- Chulkov E.G., Ostroumova O.S. 2016. Phloretin modulates the rate of channel formation by polyenes. Biochim. Biophys. Acta. 1858 (2), 289–294. doi: 10.1016/j.bbamem.2015.12.004
- Goudet C., Benitah J.P., Milat M.L., Sentenac H., Thibaud J.B. 1999. Cluster organization and pore structure of ion channels formed by beticolin 3, a nonpeptidic fungal toxin. Biophys. J. 77 (6), 3052–3059. doi: 10.1016/S0006-3495(99)77136-5
- Goudet C., Milat M.L., Sentenac H., Thibaud J.B. 2000. Beticolins, nonpeptidic, polycyclic molecules produced by the phytopathogenic fungus Cercospora beticola, as a new family of ion channel-forming toxins. Mol. Plant Microbe Interact. 3 (2), 203–209. doi: 10.1094/MPMI.2000.13.2.203
Supplementary files
