Молекулярные механизмы модуляции стволовости опухолевых клеток при формировании сфероидов: обзор литературы
- Авторы: Пономарев А.С1, Гилазиева З.Е1, Соловьева В.В1, Ризванов А.А1
-
Учреждения:
- Казанский (Приволжский) федеральный университет
- Выпуск: Том 88, № 7 (2023)
- Страницы: 1204-1222
- Раздел: Статьи
- URL: https://kld-journal.fedlab.ru/0320-9725/article/view/665617
- DOI: https://doi.org/10.31857/S0320972523070102
- EDN: https://elibrary.ru/FXXZAF
- ID: 665617
Цитировать
Аннотация
Опухолевые стволовые клетки (ОСК), их свойства и взаимодействие с микроокружением представляют интерес для современной медицины и биологии. Существует множество исследований возникновения ОСК и их вовлечённости в патогенез опухоли. Важнейшее свойство, присущее ОСК - это стволовость. Стволовость сочетает в себе способность клетки сохранять свою плюрипотентность, давать начало дифференцированным клеткам и взаимодействовать с окружающей средой для поддержания баланса между покоем, пролиферацией и регенерацией. В то время как взрослые стволовые клетки проявляют эти свойства, участвуя в гомеостазе тканей, ОСК ведут себя как их злокачественные эквиваленты. Высокая устойчивость опухоли к терапии, способность дифференцироваться, активировать ангиогенез и метастазирование возникает именно за счёт стволовости ОСК. Данные клетки могут использоваться в качестве мишени при терапии различных типов рака. Для изучения биологии рака и поиска новых терапевтических стратегий необходимы лабораторные модели. Перспективным направлением являются трёхмерные модели опухолей или сфероиды. В таких моделях формируются свойства, напоминающие стволовость в естественной опухоли. С помощью модификации сфероидов становится возможным исследовать влияние терапии на ОСК, тем самым способствуя развитию тест-систем противоопухолевых лекарственных средств. В обзоре рассматривается ниша ОСК, возможность их исследования с помощью использования трёхмерных сфероидов и существующие маркеры для оценки такого свойства ОСК, как стволовость.
Об авторах
А. С Пономарев
Казанский (Приволжский) федеральный университет420008 Казань, Республика Татарстан, Россия
З. Е Гилазиева
Казанский (Приволжский) федеральный университет420008 Казань, Республика Татарстан, Россия
В. В Соловьева
Казанский (Приволжский) федеральный университет420008 Казань, Республика Татарстан, Россия
А. А Ризванов
Казанский (Приволжский) федеральный университет
Email: rizvanov@gmail.com
420008 Казань, Республика Татарстан, Россия
Список литературы
- Wei, R., Liu, S., Zhang, S., Min, L., and Zhu, S. (2020) Cellular and extracellular components in tumor microenvironment and their application in early diagnosis of cancers, Anal. Cell Pathol. (Amst), 2020, 6283796, doi: 10.1155/2020/6283796.
- Bozyk, A., Wojas-Krawczyk, K., Krawczyk, P., and Milanowski, J. (2022) Tumor microenvironment - a short review of cellular and interaction diversity, Biology (Basel), 11, 929, doi: 10.3390/biology11060929.
- Ribeiro Franco, P. I., Rodrigues, A. P., de Menezes, L. B., and Pacheco Miguel, M. (2020) Tumor microenvironment components: allies of cancer progression, Pathol. Res. Pract., 216, 152729, doi: 10.1016/j.prp.2019.152729.
- Batlle, E., and Clevers, H. (2017) Cancer stem cells revisited, Nat. Med., 23, 1124-1134, doi: 10.1038/nm.4409.
- Capp, J. P. (2019) Cancer stem cells: from historical roots to a new perspective, J. Oncol., 2019, 5189232, doi: 10.1155/2019/5189232.
- Reya, T., Morrison, S. J., Clarke, M. F., and Weissman, I. L. (2001) Stem cells, cancer, and cancer stem cells, Nature, 414, 105-111, doi: 10.1038/35102167.
- Brooks, M. D., Burness, M. L., and Wicha, M. S. (2015) Therapeutic implications of cellular heterogeneity and plasticity in breast cancer, Cell Stem Cell, 17, 260-271, doi: 10.1016/j.stem.2015.08.014.
- Sell, S. (2010) On the stem cell origin of cancer, Am. J. Pathol., 176, 2584-2594, doi: 10.2353/ajpath.2010.091064.
- Sancho, P., Barneda, D., and Heeschen, C. (2016) Hallmarks of cancer stem cell metabolism, Br. J. Cancer, 114, 1305-1312, doi: 10.1038/bjc.2016.152.
- Clarke, M. F., Dick, J. E., Dirks, P. B., Eaves, C. J., Jamieson, C. H. M., Jones, D. L., Visvader, J., Weissman, I. L., and Wahl, G. M. (2006) Cancer stem cells - perspectives on current status and future directions: AACR Workshop on cancer stem cells, Cancer Res., 66, 9339-9344, doi: 10.1158/0008-5472.can-06-3126.
- Cabrera, M. C., Hollingsworth, R. E., and Hurt, E. M. (2015) Cancer stem cell plasticity and tumor hierarchy, World J. Stem Cells, 7, 27-36, doi: 10.4252/wjsc.v7.i1.27.
- Chaffer, C. L., Brueckmann, I., Scheel, C., Kaestli, A. J., Wiggins, P. A., Rodrigues, L. O., Brooks, M., Reinhardt, F., Su, Y., Polyak, K., Arendt, L. M., Kuperwasser, C., Bierie, B., and Weinberg, R. A. (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state, Proc. Natl. Acad. Sci. USA, 108, 7950-7955, doi: 10.1073/pnas.1102454108.
- Borovski, T., Melo, F. D. E., Vermeulen, L., and Medema, J. P. (2011) Cancer stem cell niche: the place to be, Cancer Res., 71, 634-639, doi: 10.1158/0008-5472.can-10-3220.
- Plaks, V., Kong, N. W., and Werb, Z. (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell, 16, 225-238, doi: 10.1016/j.stem.2015.02.015.
- Kim, W. T., and Ryu, C. J. (2017) Cancer stem cell surface markers on normal stem cells, Bmb Rep., 50, 285-298, doi: 10.5483/BMBRep.2017.50.6.039.
- Bonnet, D., and Dick, J. E. (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell, Nat. Med., 3, 730-737, doi: 10.1038/nm0797-730.
- Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D., and Dirks, P. B. (2004) Identification of human brain tumour initiating cells, Nature, 432, 396-401, doi: 10.1038/nature03128.
- Liu, G. T., Yuan, X. P., Zeng, Z. H., Tunici, P., Ng, H. S., Abdulkadir, I. R., Lu, L. Z., Irvin, D., Black, K. L., and Yu, J. S. (2006) Analysis of gene expression and chemoresistance of CDI33+ cancer stem cells in glioblastoma, Mol. Cancer, 5, 67, doi: 10.1186/1476-4598-5-67.
- Medema, J. P. (2013) Cancer stem cells: the challenges ahead, Nat. Cell Biol., 15, 338-344, doi: 10.1038/ncb2717.
- Gimple, R. C., Yang, K., Halbert, M. E., Agnihotri, S., and Rich, J. N. (2022) Brain cancer stem cells: resilience through adaptive plasticity and hierarchical heterogeneity, Nat. Rev. Cancer, 22, 497-514, doi: 10.1038/s41568-022-00486-x.
- De Blank, P., Fouladi, M., and Huse, J. T. (2020) Molecular markers and targeted therapy in pediatric low-grade glioma, J. Neurooncol., 150, 5-15, doi: 10.1007/s11060-020-03529-1.
- Di, W., Fan, W., Wu, F., Shi, Z., Wang, Z., Yu, M., Zhai, Y., Chang, Y., Pan, C., Li, G., Kahlert, U. D., and Zhang, W. (2022) Clinical characterization and immunosuppressive regulation of CD161 (KLRB1) in glioma through 916 samples, Cancer Sci., 113, 756-769, doi: 10.1111/cas.15236.
- Birko, Z., Nagy, B., Klekner, A., and Virga, J. (2020) Novel molecular markers in glioblastoma-benefits of liquid biopsy, Int. J. Mol. Sci., 21, 7522, doi: 10.3390/ijms21207522.
- Srivastava, M., Ahlawat, N., and Srivastava, A. (2021) Ovarian cancer stem cells: newer horizons, J. Obstet. Gynaecol. India, 71, 115-117, doi: 10.1007/s13224-020-01412-7.
- Barani, M., Bilal, M., Sabir, F., Rahdar, A., and Kyzas, G. Z. (2021) Nanotechnology in ovarian cancer: diagnosis and treatment, Life Sci., 266, 118914, doi: 10.1016/j.lfs.2020.118914.
- Zhang, R., Siu, M. K. Y., Ngan, H. Y. S., and Chan, K. K. L. (2022) Molecular biomarkers for the early detection of ovarian cancer, Int. J. Mol. Sci., 23, 12041, doi: 10.3390/ijms231912041.
- Escudero-Lourdes, C., Alvarado-Morales, I., and Tokar, E. J. (2022) Stem cells as target for prostate cancer therapy: opportunities and challenges, Stem Cell Rev. Rep., 18, 2833-2851, doi: 10.1007/s12015-022-10437-6.
- Kerr, B. A., Miocinovic, R., Smith, A. K., West, X. Z., Watts, K. E., Alzayed, A. W., Klink, J. C., Mir, M. C., Sturey, T., Hansel, D. E., Heston, W. D., Stephenson, A. J., Klein, E. A., and Byzova, T. V. (2015) CD117+ cells in the circulation are predictive of advanced prostate cancer, Oncotarget, 6, 1889-1897, doi: 10.18632/oncotarget.2796.
- Zhang, K., Zhou, S., Wang, L., Wang, J., Zou, Q., Zhao, W., Fu, Q., and Fang, X. (2016) Current stem cell biomarkers and their functional mechanisms in prostate cancer, Int. J. Mol. Sci., 17, 1163, doi: 10.3390/ijms17071163.
- Gupta, R., Bhatt, L. K., Johnston, T. P., and Prabhavalkar, K. S. (2019) Colon cancer stem cells: potential target for the treatment of colorectal cancer, Cancer Biol. Ther., 20, 1068-1082, doi: 10.1080/15384047.2019.1599660.
- Chen, K., Huang, Y. H., and Chen, J. L. (2013) Understanding and targeting cancer stem cells: therapeutic implications and challenges, Acta Pharmacol. Sin., 34, 732-740, doi: 10.1038/aps.2013.27.
- Ishiwata, T., Matsuda, Y., Yoshimura, H., Sasaki, N., Ishiwata, S., Ishikawa, N., Takubo, K., Arai, T., and Aida, J. (2018) Pancreatic cancer stem cells: features and detection methods, Pathol. Oncol. Res., 24, 797-805, doi: 10.1007/s12253-018-0420-x.
- Immervoll, H., Hoem, D., Steffensen, O. J., Miletic, H., and Molven, A. (2011) Visualization of CD44 and CD133 in normal pancreas and pancreatic ductal adenocarcinomas: non-overlapping membrane expression in cell populations positive for both markers, J. Histochem. Cytochem., 59, 441-455, doi: 10.1369/0022155411398275.
- Patil, K., Khan, F. B., Akhtar, S., Ahmad, A., and Uddin, S. (2021) The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance, Cancer Metastasis Rev., 40, 691-720, doi: 10.1007/s10555-021-09979-x.
- Gu, Y., Zheng, X., and Ji, J. (2020) Liver cancer stem cells as a hierarchical society: yes or no? Acta Biochim. Biophys. Sin. (Shanghai), 52, 723-735, doi: 10.1093/abbs/gmaa050.
- Fang, X., Yan, Q., Liu, S., and Guan, X. Y. (2022) Cancer stem cells in hepatocellular carcinoma: intrinsic and extrinsic molecular mechanisms in stemness regulation, Int. J. Mol. Sci., 23, 12327, doi: 10.3390/ijms232012327.
- Nio, K., Yamashita, T., and Kaneko, S. (2017) The evolving concept of liver cancer stem cells, Mol. Cancer, 16, 4, doi: 10.1186/s12943-016-0572-9.
- Joshi, P., Ghadi, D. S., and Waghmare, S. K. (2022) Isolation of cancer stem cells from skin squamous cell carcinoma, Methods Cell Biol., 171, 63-80, doi: 10.1016/bs.mcb.2022.06.002.
- Yin, Q., Shi, X., Lan, S., Jin, H., and Wu, D. (2021) Effect of melanoma stem cells on melanoma metastasis, Oncol. Lett., 22, 566, doi: 10.3892/ol.2021.12827.
- Zheng, Y., Wang, L., Yin, L., Yao, Z., Tong, R., Xue, J., and Lu, Y. (2022) Lung cancer stem cell markers as therapeutic targets: an update on signaling pathways and therapies, Front. Oncol., 12, 873994, doi: 10.3389/fonc.2022.873994.
- Rowbotham, S. P., Goruganthu, M. U. L., Arasada, R. R., Wang, W. Z., Carbone, D. P., and Kim, C. F. (2022) Lung cancer stem cells and their clinical implications, Cold Spring Harb. Perspect. Med., 12, a041270, doi: 10.1101/cshperspect.a041270.
- Pustovalova, M., Blokhina, T., Alhaddad, L., Chigasova, A., Chuprov-Netochin, R., Veviorskiy, A., Filkov, G., Osipov, A. N., and Leonov, S. (2022) CD44+ and CD133+ non-small cell lung cancer cells exhibit DNA damage response pathways and dormant polyploid giant cancer cell enrichment relating to their p53 status, Int. J. Mol. Sci., 23, 4922, doi: 10.3390/ijms23094922.
- Butti, R., Gunasekaran, V. P., Kumar, T. V. S., Banerjee, P., and Kundu, G. C. (2019) Breast cancer stem cells: Biology and therapeutic implications, Int. J. Biochem. Cell Biol., 107, 38-52, doi: 10.1016/j.biocel.2018.12.001.
- Wright, M. H., Calcagno, A. M., Salcido, C. D., Carlson, M. D., Ambudkar, S. V., and Varticovski, L. (2008) Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics, Breast Cancer Res., 10, R10, doi: 10.1186/bcr1855.
- Farace, C., Pisano, A., Grinan-Lison, C., Solinas, G., Jimenez, G., Serra, M., Carrillo, E., Scognamillo, F., Attene, F., Montella, A., Marchal, J. A., and Madeddu, R. (2020) Deregulation of cancer-stem-cell-associated miRNAs in tissues and sera of colorectal cancer patients, Oncotarget, 11, 116-130, doi: 10.18632/oncotarget.27411.
- Aponte, P. M., and Caicedo, A. (2017) Stemness in cancer: stem cells, cancer stem cells, and their microenvironment, Stem Cells Int., 2017, 5619472, doi: 10.1155/2017/5619472.
- Visvader, J. E., and Clevers, H. (2016) Tissue-specific designs of stem cell hierarchies, Nat. Cell Biol., 18, 349-355, doi: 10.1038/ncb3332.
- Kaseb, H. O., Fohrer-Ting, H., Lewis, D. W., Lagasse, E., and Gollin, S. M. (2016) Identification, expansion and characterization of cancer cells with stem cell properties from head and neck squamous cell carcinomas, Exp. Cell Res., 348, 75-86, doi: 10.1016/j.yexcr.2016.09.003.
- Todaro, M., Alea, M. P., Di Stefano, A. B., Cammareri, P., Vermeulen, L., Lovino, F., Tripodo, C., Russo, A., Gulotta, G., Medema, J. P., and Stassi, G. (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4, Cell Stem Cell, 1, 389-402, doi: 10.1016/j.stem.2007.08.001.
- Li, C. W., Wu, J. J., Hynes, M., Dosch, J., Sarkar, B., Welling, T. H., di Magliano, M. P., and Simeone, D. M. (2011) c-Met is a marker of pancreatic cancer stem cells and therapeutic target, Gastroenterology, 141, 2218-2227.e5, doi: 10.1053/j.gastro.2011.08.009.
- Nassar, D., and Blanpain, C. (2016) Cancer stem cells: basic concepts and therapeutic implications, Annu. Rev. Pathol. Mech. Dis., 11, 47-76, doi: 10.1146/annurev-pathol-012615-044438.
- Laplane, L., and Solary, E. (2019) Towards a classification of stem cells, Elife, 8, e46563, doi: 10.7554/eLife.46563.
- Yang, L., Shi, P., Zhao, G., Xu, J., Peng, W., Zhang, J., Zhang, G., Wang, X., Dong, Z., Chen, F., and Cui, H. (2020) Targeting cancer stem cell pathways for cancer therapy, Signal Transduct. Target. Ther., 5, 8, doi: 10.1038/s41392-020-0110-5.
- Jerabek, S., Merino, F., Scholer, H. R., and Cojocaru, V. (2014) OCT4: dynamic DNA binding pioneers stem cell pluripotency, Biochim. Biophys. Acta, 1839, 138-154, doi: 10.1016/j.bbagrm.2013.10.001.
- Murakami, S., Ninomiya, W., Sakamoto, E., Shibata, T., Akiyama, H., and Tashiro, F. (2015) SRY and OCT4 are required for the acquisition of cancer stem cell-like properties and are potential differentiation therapy targets, Stem Cells, 33, 2652-2663, doi: 10.1002/stem.2059.
- Du, Z., Jia, D., Liu, S., Wang, F., Li, G., Zhang, Y., Cao, X., Ling, E. A., and Hao, A. (2009) Oct4 is expressed in human gliomas and promotes colony formation in glioma cells, Glia, 57, 724-733, doi: 10.1002/glia.20800.
- Song, B., Kim, D. K., Shin, J., Bae, S. H., Kim, H. Y., Won, B., Kim, J. K., Youn, H. D., Kim, S. T., Kang, S. W., and Jang, H. (2018) OCT4 directly regulates stemness and extracellular matrix-related genes in human germ cell tumours, Biochem. Biophys. Res. Commun., 503, 1980-1986, doi: 10.1016/j.bbrc.2018.07.145.
- Fujino, S., and Miyoshi, N. (2019) Oct4 gene expression in primary colorectal cancer promotes liver metastasis, Stem Cells Int., 2019, 7896524, doi: 10.1155/2019/7896524.
- Lu, C. S., Shiau, A. L., Su, B. H., Hsu, T. S., Wang, C. T., Su, Y. C., Tsai, M. S., Feng, Y. H., Tseng, Y. L., Yen, Y. T., Wu, C. L., and Shieh, G. S. (2020) Oct4 promotes M2 macrophage polarization through upregulation of macrophage colony-stimulating factor in lung cancer, J. Hematol. Oncol., 13, 62, doi: 10.1186/s13045-020-00887-1.
- Hagey, D. W., Klum, S., Kurtsdotter, I., Zaouter, C., Topcic, D., Andersson, O., Bergsland, M., and Muhr, J. (2018) SOX2 regulates common and specific stem cell features in the CNS and endoderm derived organs, PLoS Genet., 14, e1007224, doi: 10.1371/journal.pgen.1007224.
- Schaefer, T., and Lengerke, C. (2020) SOX2 protein biochemistry in stemness, reprogramming, and cancer: the PI3K/AKT/SOX2 axis and beyond, Oncogene, 39, 278-292, doi: 10.1038/s41388-019-0997-x.
- Liu, P., Tang, H., Song, C., Wang, J., Chen, B., Huang, X., Pei, X., and Liu, L. (2018) SOX2 promotes cell proliferation and metastasis in triple negative breast cancer, Front. Pharmacol., 9, 942, doi: 10.3389/fphar.2018.00942.
- Maurizi, G., Verma, N., Gadi, A., Mansukhani, A., and Basilico, C. (2018) Sox2 is required for tumor development and cancer cell proliferation in osteosarcoma, Oncogene, 37, 4626-4632, doi: 10.1038/s41388-018-0292-2.
- Han, S., Huang, T., Wu, X., Wang, X., Liu, S., Yang, W., Shi, Q., Li, H., and Hou, F. (2019) Prognostic value of CD133 and SOX2 in advanced cancer, J. Oncol., 2019, 3905817, doi: 10.1155/2019/3905817.
- Heurtier, V., Owens, N., Gonzalez, I., Mueller, F., Proux, C., Mornico, D., Clerc, P., Dubois, A., and Navarro, P. (2019) The molecular logic of Nanog-induced self-renewal in mouse embryonic stem cells, Nat. Commun., 10, 1109, doi: 10.1038/s41467-019-09041-z.
- Chiou, S. H., Wang, M. L., Chou, Y. T., Chen, C. J., Hong, C. F., Hsieh, W. J., Chang, H. T., Chen, Y. S., Lin, T. W., Hsu, H. S., and Wu, C. W. (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation, Cancer Res., 70, 10433-10444, doi: 10.1158/0008-5472.CAN-10-2638.
- Lin, T., Ding, Y. Q., and Li, J. M. (2012) Overexpression of Nanog protein is associated with poor prognosis in gastric adenocarcinoma, Med. Oncol., 29, 878-885, doi: 10.1007/s12032-011-9860-9.
- De Vicente, J. C., Rodriguez-Santamarta, T., Rodrigo, J. P., Allonca, E., Vallina, A., Singhania, A., Donate-Perez Del Molino, P., and Garcia-Pedrero, J. M. (2019) The emerging role of NANOG as an early cancer risk biomarker in patients with oral potentially malignant disorders, J. Clin. Med., 8, 1376, doi: 10.3390/jcm8091376.
- Dehghan Harati, M., Rodemann, H. P., and Toulany, M. (2019) Nanog signaling mediates radioresistance in ALDH-positive breast cancer cells, Int. J. Mol. Sci., 20, 1151, doi: 10.3390/ijms20051151.
- Wang, X., Jin, J., Wan, F., Zhao, L., Chu, H., Chen, C., Liao, G., Liu, J., Yu, Y., Teng, H., Fang, L., Jiang, C., Pan, W., Xie, X., Li, J., Lu, X., Jiang, X., Ge, X., Ye, D., and Wang, P. (2019) AMPK promotes SPOP-mediated NANOG degradation to regulate prostate cancer cell stemness, Dev. Cell, 48, 345-360.e347, doi: 10.1016/j.devcel.2018.11.033.
- Ghaleb, A. M., and Yang, V. W. (2017) Kruppel-like factor 4 (KLF4): what we currently know, Gene, 611, 27-37, doi: 10.1016/j.gene.2017.02.025.
- Hsieh, M. H., Chen, Y. T., Chen, Y. T., Lee, Y. H., Lu, J., Chien, C. L., Chen, H. F., Ho, H. N., Yu, C. J., Wang, Z. Q., and Teng, S. C. (2017) PARP1 controls KLF4-mediated telomerase expression in stem cells and cancer cells, Nucleic Acids Res., 45, 10492-10503, doi: 10.1093/nar/gkx683.
- Riverso, M., Montagnani, V., and Stecca, B. (2017) KLF4 is regulated by RAS/RAF/MEK/ERK signaling through E2F1 and promotes melanoma cell growth, Oncogene, 36, 3322-3333, doi: 10.1038/onc.2016.481.
- Qi, X. T., Li, Y. L., Zhang, Y. Q., Xu, T., Lu, B., Fang, L., Gao, J. Q., Yu, L. S., Zhu, D. F., Yang, B., He, Q. J., and Ying, M. D. (2019) KLF4 functions as an oncogene in promoting cancer stem cell-like characteristics in osteosarcoma cells, Acta Pharmacol. Sin., 40, 546-555, doi: 10.1038/s41401-18-0050-6.
- Ding, X., Zhong, T., Jiang, L., Huang, J., Xia, Y., and Hu, R. (2018) miR-25 enhances cell migration and invasion in non-small-cell lung cancer cells via ERK signaling pathway by inhibiting KLF4, Mol. Med. Rep., 17, 7005-7016, doi: 10.3892/mmr.2018.8772.
- Wang, B., Shen, A., Ouyang, X., Zhao, G., Du, Z., Huo, W., Zhang, T., Wang, Y., Yang, C., Dong, P., Watari, H., Pfeffer, L. M., and Yue, J. (2017) KLF4 expression enhances the efficacy of chemotherapy drugs in ovarian cancer cells, Biochem. Biophys. Res. Commun., 484, 486-492, doi: 10.1016/j.bbrc.2017.01.062.
- Dang, C. V. (2012) MYC on the path to cancer, Cell, 149, 22-35, doi: 10.1016/j.cell.2012.03.003.
- Galardi, S., Savino, M., Scagnoli, F., Pellegatta, S., Pisati, F., Zambelli, F., Illi, B., Annibali, D., Beji, S., Orecchini, E., Alberelli, M. A., Apicella, C., Fontanella, R. A., Michienzi, A., Finocchiaro, G., Farace, M. G., Pavesi, G., Ciafre, S. A., and Nasi, S. (2016) Resetting cancer stem cell regulatory nodes upon MYC inhibition, EMBO Rep., 17, 1872-1889, doi: 10.15252/embr.201541489.
- Lourenco, C., Kalkat, M., Houlahan, K. E., De Melo, J., Longo, J., Done, S. J., Boutros, P. C., and Penn, L. Z. (2019) Modelling the MYC-driven normal-to-tumour switch in breast cancer, Dis. Model. Mech., 12, dmm038083, doi: 10.1242/dmm.038083.
- Dong, H., Hu, J., Wang, L., Qi, M., Lu, N., Tan, X., Yang, M., Bai, X., Zhan, X., and Han, B. (2019) SOX4 is activated by C-MYC in prostate cancer, Med. Oncol., 36, 92, doi: 10.1007/s12032-019-1317-6.
- Fabregat, I., Malfettone, A., and Soukupova, J. (2016) New insights into the crossroads between EMT and stemness in the context of cancer, J. Clin. Med., 5, 37, doi: 10.3390/jcm5030037.
- Katoh, M. (2007) Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis, Stem Cell Rev., 3, 30-38, doi: 10.1007/s12015-007-0006-6.
- Visvader, J. E., and Lindeman, G. J. (2012) Cancer stem cells: current status and evolving complexities, Cell Stem Cell, 10, 717-728, doi: 10.1016/j.stem.2012.05.007.
- Clements, W. M., Wang, J., Sarnaik, A., Kim, O. J., MacDonald, J., Fenoglio-Preiser, C., Groden, J., and Lowy, A. M. (2002) beta-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer, Cancer Res., 62, 3503-3506.
- Abd El-Rehim, D., and Ali, M. M. (2009) Aberrant expression of beta-catenin in invasive ductal breast carcinomas, J. Egypt. Natl. Canc. Inst., 21, 185-195.
- Kudo, J., Nishiwaki, T., Haruki, N., Ishiguro, H., Shibata, Y., Terashita, Y., Sugiura, H., Shinoda, N., Kimura, M., Kuwabara, Y., and Fujii, Y. (2007) Aberrant nuclear localization of β-catenin without genetic alterations in beta-catenin or Axin genes in esophageal cancer, World J. Surg. Oncol., 5, 21, doi: 10.1186/1477-7819-5-21.
- Zhao, X., Jiang, C., Xu, R., Liu, Q., Liu, G., and Zhang, Y. (2020) TRIP6 enhances stemness property of breast cancer cells through activation of Wnt/beta-catenin, Cancer Cell Int., 20, 51, doi: 10.1186/s12935-020-1136-z.
- Zhu, L., Pan, R., Zhou, D., Ye, G., and Tan, W. (2019) BCL11A enhances stemness and promotes progression by activating Wnt/beta-catenin signaling in breast cancer, Cancer Manag. Res., 11, 2997-3007, doi: 10.2147/CMAR.S199368.
- Zhang, L., Dong, X., Yan, B., Yu, W., and Shan, L. (2020) CircAGFG1 drives metastasis and stemness in colorectal cancer by modulating YY1/CTNNB1, Cell Death Dis., 11, 542, doi: 10.1038/s41419-020-2707-6.
- Xiang, X., Xiong, R., Yu, C., Deng, L., Bie, J., Xiao, D., Chen, Z., Zhou, Y., Li, X., Liu, K., and Feng, G. (2019) Tex10 promotes stemness and EMT phenotypes in esophageal squamous cell carcinoma via the Wnt/betacatenin pathway, Oncol. Rep., 42, 2600-2610, doi: 10.3892/or.2019.7376.
- Stylianou, S., Clarke, R. B., and Brennan, K. (2006) Aberrant activation of notch signaling in human breast cancer, Cancer Res., 66, 1517-1525, doi: 10.1158/0008-5472.CAN-05-3054.
- Li, L., Tang, P., Li, S., Qin, X., Yang, H., Wu, C., and Liu, Y. (2017) Notch signaling pathway networks in cancer metastasis: a new target for cancer therapy, Med. Oncol., 34, 180, doi: 10.1007/s12032-017-1039-6.
- Katoh, M., and Katoh, M. (2020) Precision medicine for human cancers with Notch signaling dysregulation (Review), Int. J. Mol. Med., 45, 279-297, doi: 10.3892/ijmm.2019.4418.
- Amantini, C., Morelli, M. B., Nabissi, M., Cardinali, C., Santoni, M., Gismondi, A., and Santoni, G. (2016) Capsaicin triggers autophagic cell survival which drives epithelial mesenchymal transition and chemoresistance in bladder cancer cells in an Hedgehog-dependent manner, Oncotarget, 7, 50180-50194, doi: 10.18632/oncotarget.10326.
- Villegas, V. E., Rondon-Lagos, M., Annaratone, L., Castellano, I., Grismaldo, A., Sapino, A., and Zaphiropoulos, P. G. (2016) Tamoxifen treatment of breast cancer cells: impact on Hedgehog/GLI1 signaling, Int. J. Mol. Sci., 17, 308, doi: 10.3390/ijms17030308.
- Jeng, K. S., Chang, C. F., and Lin, S. S. (2020) Sonic hedgehog signaling in organogenesis, tumors, and tumor microenvironments, Int. J. Mol. Sci., 21, 758, doi: 10.3390/ijms21030758.
- Petrova, R., and Joyner, A. L. (2014) Roles for Hedgehog signaling in adult organ homeostasis and repair, Development, 141, 3445-3457, doi: 10.1242/dev.083691.
- Po, A., Silvano, M., Miele, E., Capalbo, C., Eramo, A., Salvati, V., Todaro, M., Besharat, Z. M., Catanzaro, G., Cucchi, D., Coni, S., Di Marcotullio, L., Canettieri, G., Vacca, A., Stassi, G., De Smaele, E., Tartaglia, M., Screpanti, I., De Maria, R., and Ferretti, E. (2017) Noncanonical GLI1 signaling promotes stemness features and in vivo growth in lung adenocarcinoma, Oncogene, 36, 4641-4652, doi: 10.1038/onc.2017.91.
- Zhu, R., Gires, O., Zhu, L., Liu, J., Li, J., Yang, H., Ju, G., Huang, J., Ge, W., Chen, Y., Lu, Z., and Wang, H. (2019) TSPAN8 promotes cancer cell stemness via activation of sonic Hedgehog signaling, Nat. Commun., 10, 2863, doi: 10.1038/s41467-019-10739-3.
- Hayden, M. S., and Ghosh, S. (2008) Shared principles in NF-kappaB signaling, Cell, 132, 344-362, doi: 10.1016/j.cell.2008.01.020.
- Prasad, S., Rarnachandran, S., Gupta, N., Kaushik, I., and Srivastava, S. K. (2020) Cancer cells stemness: A doorstep to targeted therapy, Biochim. Biophys. Acta Mol. Bas. Dis., 1866, 165424, doi: 10.1016/j.bbadis.2019.02.019.
- Prasad, S., Ravindran, J., and Aggarwal, B. B. (2010) NF-kappaB and cancer: how intimate is this relationship, Mol. Cell. Biochem., 336, 25-37, doi: 10.1007/s11010-009-0267-2.
- Van der Zee, M., Sacchetti, A., Cansoy, M., Joosten, R., Teeuwssen, M., Heijmans-Antonissen, C., Ewing-Graham, P. C., Burger, C. W., Blok, L. J., and Fodde, R. (2015) IL6/JAK1/STAT3 signaling blockade in endometrial cancer affects the ALDHhi/CD126+ stem-like component and reduces tumor burden, Cancer Res., 75, 3608-3622, doi: 10.1158/0008-5472.CAN-14-2498.
- Yang, L., Dong, Y., Li, Y., Wang, D., Liu, S., Wang, D., Gao, Q., Ji, S., Chen, X., Lei, Q., Jiang, W., Wang, L., Zhang, B., Yu, J. J., and Zhang, Y. (2019) IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-kappaB/Notch1 pathway in non-small cell lung cancer, Int. J. Cancer, 145, 1099-1110, doi: 10.1002/ijc.32151.
- Park, S. Y., Lee, C. J., Choi, J. H., Kim, J. H., Kim, J. W., Kim, J. Y., and Nam, J. S. (2019) The JAK2/STAT3/CCND2 axis promotes colorectal cancer stem cell persistence and radioresistance, J. Exp. Clin. Cancer Res., 38, 399, doi: 10.1186/s13046-019-1405-7.
- Toh, T. B., Lim, J. J., Hooi, L., Rashid, M., and Chow, E. K. (2020) Targeting Jak/Stat pathway as a therapeutic strategy against SP/CD44+ tumorigenic cells in Akt/beta-catenin-driven hepatocellular carcinoma, J. Hepatol., 72, 104-118, doi: 10.1016/j.jhep.2019.08.035.
- Chambers, I. (2004) The molecular basis of pluripotency in mouse embryonic stem cells, Cloning Stem Cells, 6, 386-391, doi: 10.1089/clo.2004.6.386.
- Zhou, J., Wulfkuhle, J., Zhang, H., Gu, P., Yang, Y., Deng, J., Margolick, J. B., Liotta, L. A., Petricoin, E., 3rd, and Zhang, Y. (2007) Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance, Proc. Natl. Acad. Sci. USA, 104, 16158-16163, doi: 10.1073/pnas.0702596104.
- Kaowinn, S., Kaewpiboon, C., Koh, S. S., Kramer, O. H., and Chung, Y. H. (2018) STAT1HDAC4 signaling induces epithelialmesenchymal transition and sphere formation of cancer cells overexpressing the oncogene, CUG2, Oncol. Rep., 40, 2619-2627, doi: 10.3892/or.2018.6701.
- Dey, N., De, P., and Leyland-Jones, B. (2017) PI3K-AKT-mTOR inhibitors in breast cancers: from tumor cell signaling to clinical trials, Pharmacol. Ther., 175, 91-106, doi: 10.1016/j.pharmthera.2017.02.037.
- Tan, A. C. (2020) Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC), Thorac. Cancer, 11, 511-518, doi: 10.1111/1759-7714.13328.
- Karami Fath, M., Ebrahimi, M., Nourbakhsh, E., Zia Hazara, A., Mirzaei, A., Shafieyari, S., Salehi, A., Hoseinzadeh, M., Payandeh, Z., and Barati, G. (2022) PI3K/Akt/mTOR signaling pathway in cancer stem cells, Pathol. Res. Pract., 237, 154010, doi: 10.1016/j.prp.2022.154010.
- Nepstad, I., Hatfield, K. J., Gronningsaeter, I. S., and Reikvam, H. (2020) The PI3K-Akt-mTOR signaling pathway in human acute myeloid leukemia (AML) cells, Int. J. Mol. Sci., 21, 2907, doi: 10.3390/ijms21082907.
- Madsen, R. R. (2020) PI3K in stemness regulation: from development to cancer, Biochem. Soc. Trans., 48, 301-315, doi: 10.1042/BST20190778.
- Fitzgerald, T. L., Lertpiriyapong, K., Cocco, L., Martelli, A. M., Libra, M., Candido, S., Montalto, G., Cervello, M., Steelman, L., Abrams, S. L., and McCubrey, J. A. (2015) Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells, Adv. Biol. Regul., 59, 65-81, doi: 10.1016/j.jbior.2015.06.003.
- Nangia-Makker, P., Hogan, V., and Raz, A. (2018) Galectin-3 and cancer stemness, Glycobiology, 28, 172-181, doi: 10.1093/glycob/cwy001.
- Li, Y., Hu, H., Wang, Y., Fan, Y., Yang, Y., Guo, B., Xie, X., Lian, J., Jiang, B., Han, B., Wang, Y., Shao, C., and Gong, Y. (2020) CUL4B contributes to cancer stemness by repressing tumor suppressor miR34a in colorectal cancer, Oncogenesis, 9, 20, doi: 10.1038/s41389-020-0206-3.
- Ramadoss, S., Sen, S., Ramachandran, I., Roy, S., Chaudhuri, G., and Farias-Eisner, R. (2017) Lysine-specific demethylase KDM3A regulates ovarian cancer stemness and chemoresistance, Oncogene, 36, 1537-1545, doi: 10.1038/onc.2016.320.
- Kim, H. Y., Kim, D. K., Bae, S. H., Gwak, H., Jeon, J. H., Kim, J. K., Lee, B. I., You, H. J., Shin, D. H., Kim, Y. H., Kim, S. Y., Han, S. S., Shim, J. K., Lee, J. H., Kang, S. G., and Jang, H. (2018) Farnesyl diphosphate synthase is important for the maintenance of glioblastoma stemness, Exp. Mol. Med., 50, 1-12, doi: 10.1038/s12276-018-0166-2.
- Mei, Y., Cai, D., and Dai, X. (2020) Modulating cancer stemness provides luminal a breast cancer cells with HER2 positive-like features, J. Cancer, 11, 1162-1169, doi: 10.7150/jca.37117.
- Ouspenskaia, T., Matos, I., Mertz, A. F., Fiore, V. F., and Fuchs, E. (2016) WNT-SHH antagonism specifies and expands stem cells prior to niche formation, Cell, 164, 156-169, doi: 10.1016/j.cell.2015.11.058.
- Wahlster, L., and Daley, G. Q. (2016) Progress towards generation of human haematopoietic stem cells, Nat. Cell. Biol., 18, 1111-1117, doi: 10.1038/ncb3419.
- Beck, B., Driessens, G., Goossens, S., Youssef, K. K., Kuchnio, A., Caauwe, A., Sotiropoulou, P. A., Loges, S., Lapouge, G., Candi, A., Mascre, G., Drogat, B., Dekoninck, S., Haigh, J. J., Carmeliet, P., and Blanpain, C. (2011) A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours, Nature, 478, 399-403, doi: 10.1038/nature10525.
- Zhang, Z., Dong, Z., Lauxen, I. S., Filho, M. S., and Nor, J. E. (2014) Endothelial cell-secreted EGF induces epithelial to mesenchymal transition and endows head and neck cancer cells with stem-like phenotype, Cancer Res., 74, 2869-2881, doi: 10.1158/0008-5472.CAN-13-2032.
- Yu, Y., Xiao, C. H., Tan, L. D., Wang, Q. S., Li, X. Q., and Feng, Y. M. (2014) Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-beta signalling, Br. J. Cancer, 110, 724-732, doi: 10.1038/bjc.2013.768.
- Bao, B., Azmi, A. S., Ali, S., Ahmad, A., Li, Y., Banerjee, S., Kong, D., and Sarkar, F. H. (2012) The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness, Biochim. Biophys. Acta, 1826, 272-296, doi: 10.1016/j.bbcan.2012.04.008.
- Joseph, J. V., Conroy, S., Pavlov, K., Sontakke, P., Tomar, T., Eggens-Meijer, E., Balasubramaniyan, V., Wagemakers, M., den Dunnen, W. F., and Kruyt, F. A. (2015) Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1alpha-ZEB1 axis, Cancer Lett., 359, 107-116, doi: 10.1016/j.canlet.2015.01.010.
- Zhang, M., Xu, C., Wang, H. Z., Peng, Y. N., Li, H. O., Zhou, Y. J., Liu, S., Wang, F., Liu, L., Chang, Y., Zhao, Q., and Liu, J. (2019) Soft fibrin matrix downregulates DAB2IP to promote Nanog-dependent growth of colon tumor-repopulating cells, Cell Death Dis., 10, 151, doi: 10.1038/s41419-019-1309-7.
- Valadão, I. C., Ralph, A. C. L., Bordeleau, F., Dzik, L. M., Borbely, K. S. C., Geraldo, M. V., Reinhart-King, C. A., and Freitas, V. M. (2020) High type I collagen density fails to increase breast cancer stem cell phenotype, PeerJ, 8, e9153, doi: 10.7717/peerj.9153.
- Zhang, C., Ma, K., and Li, W. Y. (2019) IL-6 promotes cancer stemness and oncogenicity in U2OS and MG-63 osteosarcoma cells by upregulating the OPN-STAT3 pathway, J. Cancer, 10, 6511-6525, doi: 10.7150/jca.29931.
- Li, Y., Wang, L., Pappan, L., Galliher-Beckley, A., and Shi, J. (2012) IL-1beta promotes stemness and invasiveness of colon cancer cells through Zeb1 activation, Mol. Cancer, 11, 87, doi: 10.1186/1476-4598-11-87.
- Hong, H. S., Akhavan, J., Lee, S. H., Kim, R. H., Kang, M. K., Park, N. H., and Shin, K. H. (2020) Proinflammatory cytokine TNFalpha promotes HPV-associated oral carcinogenesis by increasing cancer stemness, Int. J. Oral Sci., 12, 3, doi: 10.1038/s41368-019-0069-7.
- Bronisz, A., Wang, Y., Nowicki, M. O., Peruzzi, P., Ansari, K. I., Ogawa, D., Balaj, L., De Rienzo, G., Mineo, M., Nakano, I., Ostrowski, M. C., Hochberg, F., Weissleder, R., Lawler, S. E., Chiocca, E. A., and Godlewski, J. (2014) Extracellular vesicles modulate the glioblastoma microenvironment via a tumor suppression signaling network directed by miR-1, Cancer Res., 74, 738-750, doi: 10.1158/0008-5472.Can-13-2650.
- Hu, Y. B., Yan, C., Mu, L., Huang, K. Y., Li, X. L., Tao, D. D., Wu, Y. Q., and Qin, J. C. (2015) Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer, PLoS One, 10, e0125625, doi: 10.1371/journal.pone.0125625.
- Bruno, S., Collino, F., Deregibus, M. C., Grange, C., Tetta, C., and Camussi, G. (2013) Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth, Stem Cells Dev., 22, 758-771, doi: 10.1089/scd.2012.0304.
- Zhang, X., Tu, H., Yang, Y., Fang, L., Wu, Q., and Li, J. (2017) Mesenchymal stem cell-derived extracellular vesicles: roles in tumor growth, progression, and drug resistance, Stem Cells Int., 2017, 1758139, doi: 10.1155/2017/1758139.
- Weiswald, L. B., Bellet, D., and Dangles-Marie, V. (2015) Spherical cancer models in tumor biology, Neoplasia, 17, 1-15, doi: 10.1016/j.neo.2014.12.004.
- Gupta, P. B., Onder, T. T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R. A., and Lander, E. S. (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening, Cell, 138, 645-659, doi: 10.1016/j.cell.2009.06.034.
- Oskarsson, T., Acharyya, S., Zhang, X. H., Vanharanta, S., Tavazoie, S. F., Morris, P. G., Downey, R. J., Manova-Todorova, K., Brogi, E., and Massague, J. (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs, Nat. Med., 17, 867-874, doi: 10.1038/nm.2379.
- Ishiguro, T., Ohata, H., Sato, A., Yamawaki, K., Enomoto, T., and Okamoto, K. (2017) Tumor-derived spheroids: relevance to cancer stem cells and clinical applications, Cancer Sci., 108, 283-289, doi: 10.1111/cas.13155.
- Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., and Dirks, P. B. (2003) Identification of a cancer stem cell in human brain tumors, Cancer Res., 63, 5821-5828.
- Ponti, D., Costa, A., Zaffaroni, N., Pratesi, G., Petrangolini, G., Coradini, D., Pilotti, S., Pierotti, M. A., and Daidone, M. G. (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties, Cancer Res., 65, 5506-5511, doi: 10.1158/0008-5472.CAN-05-0626.
- Gilazieva, Z., Ponomarev, A., Rutland, C., Rizvanov, A., and Solovyeva, V. (2020) Promising applications of tumor spheroids and organoids for personalized medicine, Cancers (Basel), 12, 2727, doi: 10.3390/cancers12102727.
- Han, S. J., Kwon, S., and Kim, K. S. (2021) Challenges of applying multicellular tumor spheroids in preclinical phase, Cancer Cell Int., 21, 152, doi: 10.1186/s12935-021-01853-8.
- Hirschhaeuser, F., Menne, H., Dittfeld, C., West, J., Mueller-Klieser, W., and Kunz-Schughart, L. A. (2010) Multicellular tumor spheroids: an underestimated tool is catching up again, J. Biotechnol., 148, 3-15, doi: 10.1016/j.jbiotec.2010.01.012.
- Costa, E. C., Moreira, A. F., de Melo-Diogo, D., Gaspar, V. M., Carvalho, M. P., and Correia, I. J. (2016) 3D tumor spheroids: an overview on the tools and techniques used for their analysis, Biotechnol. Adv., 34, 1427-1441, doi: 10.1016/j.biotechadv.2016.11.002.
- Jensen, C., and Teng, Y. (2020) Is it time to start transitioning from 2D to 3D cell culture? Front. Mol. Biosci., 7, 33, doi: 10.3389/fmolb.2020.00033.
- Forte, E., Chimenti, I., Rosa, P., Angelini, F., Pagano, F., Calogero, A., Giacomello, A., and Messina, E. (2017) EMT/MET at the crossroad of stemness, regeneration and oncogenesis: the ying-yang equilibrium recapitulated in cell spheroids, Cancers, 9, 98, doi: 10.3390/cancers9080098.
- Eyler, C. E., Foo, W. C., Lafiura, K. M., McLendon, R. E., Hjelmeland, A. B., and Rich, J. N. (2008) Brain cancer stem cells display preferential sensitivity to Akt inhibition, Stem Cells, 26, 3027-3036, doi: 10.1634/stemcells.2007-1073.
- Lindemann, R. K. (2008) Stroma-initiated hedgehog signaling takes center stage in B-cell lymphoma, Cancer Res., 68, 961-964, doi: 10.1158/0008-5472.can-07-5500.
- Namiki, K., Wongsirisin, P., Yokoyama, S., Sato, M., Rawangkan, A., Sakai, R., Iida, K., and Suganuma, M. (2020) (-)-Epigallocatechin gallate inhibits stemness and tumourigenicity stimulated by AXL receptor tyrosine kinase in human lung cancer cells, Sci. Rep., 10, 2444, doi: 10.1038/s41598-020-59281-z.
- Fendler, A., Bauer, D., Busch, J., Jung, K., Wulf-Goldenberg, A., Kunz, S., Song, K., Myszczyszyn, A., Elezkurtaj, S., Erguen, B., Jung, S., Chen, W., and Birchmeier, W. (2020) Inhibiting WNT and NOTCH in renal cancer stem cells and the implications for human patients, Nat. Commun., 11, 929, doi: 10.1038/s41467-020-14700-7.
- Stewart, M., and Fox, S. E. (1989) Firing relations of medial septal neurons to the hippocampal theta-rhythm in urethane anesthetized rats, Exp. Brain Res., 77, 507-516, doi: 10.1007/BF00249604.
- Qureshi-Baig, K., Ullmann, P., Rodriguez, F., Frasquilho, S., Nazarov, P. V., Haan, S., and Letellier, E. (2016) What do we learn from spheroid culture systems? Insights from tumorspheres derived from primary colon cancer tissue, PLoS One, 11, e0146052, doi: 10.1371/journal.pone.0146052.
- Zhang, S., Balch, C., Chan, M. W., Lai, H. C., Matei, D., Schilder, J. M., Yan, P. S., Huang, T. H. M., and Nephew, K. P. (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors, Cancer Res., 68, 4311-4320, doi: 10.1158/0008-5472.can-08-0364.
- Rashidi, M. R. W., Mehta, P., Bregenzer, M., Raghavan, S., Fleck, E. M., Horst, E. N., Harissa, Z., Ravikumar, V., Brady, S., Bild, A., Rao, A., Buckanovich, R. J., and Mehta, G. (2019) Engineered 3D model of cancer stem cell enrichment and chemoresistance, Neoplasia, 21, 822-836, doi: 10.1016/j.neo.2019.06.005.
- Bahmad, H. F., Cheaito, K., Chalhoub, R. M., Hadadeh, O., Monzer, A., Ballout, F., El-Hajj, A., Mukherji, D., Liu, Y. N., Daoud, G., and Abou-Kheir, W. (2018) Sphere-formation assay: three-dimensional in vitro culturing of prostate cancer stem/progenitor sphere-forming cells, Front. Oncol., 8, 347, doi: 10.3389/fonc.2018.00347.
- Rybak, A. P., He, L. Z., Kapoor, A., Cutz, J. C., and Tang, D. (2011) Characterization of sphere-propagating cells with stem-like properties from DU145 prostate cancer cells, Biochim. Biophys. Acta Mol. Cell Res., 1813, 683-694, doi: 10.1016/j.bbamcr.2011.01.018.
- Herheliuk, T., Perepelytsina, O., Ugnivenko, A., Ostapchenko, L., and Sydorenko, M. (2019) Investigation of multicellular tumor spheroids enriched for a cancer stem cell phenotype, Stem Cell Invest., 6, 21-21, doi: 10.21037/sci.2019.06.07.
- Cao, L., Zhou, Y. M., Zhai, B. B., Liao, J., Xu, W., Zhang, R. X., Li, J., Zhang, Y., Chen, L., Qian, H. H., Wu, M. C., and Yin, Z. F. (2011) Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines, BMC Gastroenterol., 11, 71, doi: 10.1186/1471-230x-11-71.
- Maliszewska-Olejniczak, K., Brodaczewska, K. K., Bielecka, Z. F., Solarek, W., Kornakiewicz, A., Szczylik, C., Porta, C., and Czarnecka, A. M. (2019) Development of extracellular matrix supported 3D culture of renal cancer cells and renal cancer stem cells, Cytotechnology, 71, 149-163, doi: 10.1007/s10616-018-0273-x.
- Chen, L., Xiao, Z. F., Meng, Y., Zhao, Y. N., Han, J., Su, G. N., Chen, B., and Dai, J. W. (2012) The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs, Biomaterials, 33, 1437-1444, doi: 10.1016/j.biomaterials.2011.10.056.
- Farace, C., Oliver, J. A., Melguizo, C., Alvarez, P., Bandiera, P., Rama, A. R., Malaguarnera, G., Ortiz, R., Madeddu, R., and Prados, J. (2015) Microenvironmental modulation of decorin and lumican in temozolomide-resistant glioblastoma and neuroblastoma cancer stem-like cells, PLoS One, 10, e0134111, doi: 10.1371/journal.pone.0134111.
- Gao, W. J., Wu, D. L., Wang, Y. L., Wang, Z., Zou, C., Dai, Y., Ng, C. F., Teoh, J. Y. C., and Chan, F. L. (2018) Development of a novel and economical agar-based non-adherent three-dimensional culture method for enrichment of cancer stem-like cells, Stem Cell Res. Ther., 9, 243, doi: 10.1186/s13287-018-0987-x.
- Chen, S. F., Chang, Y. C., Nieh, S., Liu, C. L., Yang, C. Y., and Lin, Y. S. (2012) Nonadhesive culture system as a model of rapid sphere formation with cancer stem cell properties, PLoS One, 7, e31864, doi: 10.1371/journal.pone.0031864.
- Zhu, Z. W., Chen, L., Liu, J. X., Huang, J. W., Wu, G., Zheng, Y. F., and Yao, K. T. (2018) A novel three-dimensional tumorsphere culture system for the efficient and low-cost enrichment of cancer stem cells with natural polymers, Exper. Ther. Med., 15, 85-92, doi: 10.3892/etm.2017.5419.
- Muenzner, J. K., Kunze, P., Lindner, P., Polaschek, S., Menke, K., Eckstein, M., Geppert, C. I., Chanvorachote, P., Baeuerle, T., Hartmann, A., and Schneider-Stock, R. (2018) Generation and characterization of hepatocellular carcinoma cell lines with enhanced cancer stem cell potential, J. Cell. Mol. Med., 22, 6238-6248, doi: 10.1111/jcmm.13911.
- Xue, J. G., Zhu, Y., Sun, Z. X., Ji, R. B., Zhang, X., Xu, W. R., Yuan, X., Zhang, B., Yan, Y. M., Yin, L., Xu, H. J., Zhang, L. L., Zhu, W., and Qian, H. (2015) Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness, BMC Cancer, 15, 793, doi: 10.1186/s12885-015-1780-1.
- Nath, S., and Devi, G. R. (2016) Three-dimensional culture systems in cancer research: focus on tumor spheroid model, Pharmacol. Ther., 163, 94-108, doi: 10.1016/j.pharmthera.2016.03.013.
Дополнительные файлы
