Fabrication of GRIN microstructures by two-photon lithography

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The method of two-photon lithography is used to fabricate GRIN microstructures. Test rectangular structures with sizes 25 × 25 × 3 micrometers were used with varying laser intensity by linear or gaussian distribution in one dimension. The resulting refractive index has been tuned in the range of 0.03. The suggested method can be applied to produce arbitrarily shaped 3D GRIN micro-optical elements.

About the authors

M. D. Aparin

Lomonosov Moscow State University

Author for correspondence.
Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

T. G. Baluyan

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

M. I. Sharipova

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

M. A. Sirotin

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

E. V. Lyubin

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

I. V. Soboleva

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

V. O. Bessonov

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

A. A. Fedyanin

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

References

  1. Gomez-Reino C., Perez M., Bao C. Gradient-index optics: fundamentals and applications. Springer, 2002. 239 p.
  2. Hwang Y., Phillips N., Dale E.O. et al. // Opt. Express. 2022. V. 30. No. 8. P. 12294.
  3. Gomez-Reino C., Perez M.V., Bao C., Flores-Arias T.M. // Laser Photon. Rev. 2008. V. 2. No. 3. P. 203.
  4. Kundal S., Bhatnagar A., Sharma R. Optical and wireless technologies, Springer, 2022. 443 p.
  5. Pickering M.A., Taylor R.L., Moore D.T. // Appl. Opt. 1986. V. 25. No. 19. P. 3364.
  6. Ohmi S., Sakai H., Asahara Y. et al. // Appl. Opt. 1988. V. 27. No. 3. P. 496.
  7. Sinai P. // Appl. Opt. 1971. V. 10. No. 1. P. 99.
  8. Liu J.H., Yang P.C., Chiu Y.H. // J. Polym. Sci. A. 2006. V. 44. No. 20. P. 5933.
  9. Liu J.H., Chiu Y.H. // Opt. Lett. 2009. V. 34. No. 9. P. 1393.
  10. Mingareev I., Kang M., Truman M. et al. // Opt. Laser Technol. 2020. V. 126. Art. No. 106058.
  11. Dylla-Spears R., Yee T.D., Sasan K. et al. // Sci. Advances. 2020. V. 6. No. 47. Art. No. eabc7429.
  12. Mao M., He J., Li X. et al. // Micromachines. 2017. V. 8. No. 4. P. 113.
  13. Sharipova M.I., Baluyan T.G., Abrashitova K.A. et al. // Opt. Mater. Express. 2021. V. 11. No. 2. P. 371.
  14. Zhou X., Hou Y., Lin J. // AIP Advances. 2005. V. 5. No. 3. Art. No. 030701.
  15. Ocier R.C., Richards C.A., Bacon-Brown D.A. et al. // Light Sci. Appl. 2020. V. 9. Art. No. 196.
  16. Žukauskas A., Matulaitienė I., Paipulas D. et al. // Laser Photon. Rev. 2015. V. 9. No. 6. P. 706.
  17. Pertoldi L., Zega V., Comi C., Osellame R. // J. Appl. Phys. 2020. V. 128. No. 17. Art. No. 175102.
  18. Drexler W., Fujimoto J.G. Optical coherence tomography. Technology and applications. Springer, 2008. 1327 p.
  19. Sirotin M.A., Romodina M.N., Lyubin E.V. et al. // Biomed. Opt. Express. 2022. V. 13. No. 1. P. 14.
  20. Safronov K.R., Gulkin D.N., Antropov I.M. et al. // ACS Nano. 2020. V. 14. No. 8. P. 10428.
  21. Safronov K.R., Bessonov V.O., Akhremenkov D.V. et al. // Laser Photon. Rev. 2022. V. 16. No. 4. Art. No. 2100542.
  22. Giessibl F.J. // Rev. Mod. Phys. 2003. V. 75. No. 3. P. 949.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (341KB)
3.

Download (60KB)
4.

Download (918KB)
5.

Download (949KB)

Copyright (c) 2023 М.Д. Апарин, Т.Г. Балуян, М.И. Шарипова, М.А. Сиротин, Е.В. Любин, И.В. Соболева, В.О. Бессонов, А.А. Федянин