Flat-field correction on X-ray tomographic images using deep convolutional neural networks

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We proposed to use neural networks to solve the problem of flat-field correction. We described the process of selecting parameters of a deep convolutional neural network to solve the flat-field correction problem with the instability of an empty beam, describes the training of this network, and checks its operability on the generated data. The developed method was tested on data obtained both on laboratory X-ray sources and synchrotron sources.

About the authors

А. Yu. Grigorev

Shubnikov Institute of Crystallography of the Federal Scientific Research Centre “Crystallography and Photonics”
of the Russian Academy of Sciences

Author for correspondence.
Email: grigorev.a@crys.ras.ru
Russia, 119333, Moscow

А. V. Buzmakov

Shubnikov Institute of Crystallography of the Federal Scientific Research Centre “Crystallography and Photonics”
of the Russian Academy of Sciences

Email: grigorev.a@crys.ras.ru
Russia, 119333, Moscow

References

  1. Landis E.N., Keane D.T. // Mater. Charact. 2010. V. 61. No. 12. P. 1305.
  2. Seibert J.A., Boone J.M., Lindfors K.K. // Proc. SPIE. 1998. V. 3336. P. 348.
  3. Nieuwenhove V.V., Beenhouwer J.D., Carlo F.D. et al. // Opt. Express. 2015. V. 23. No. 21. P. 27975.
  4. Hagemann J., Vassholz M., Hoeppe H. et al. // J. Synchrotron Radiat. 2021. V. 28. No. 1. P. 52.
  5. Buakor K., Zhang Yu., Birnšteinová Š et al. // Optics Express. 2022. V. 30. No. 7. P. 10633.
  6. LeCun Y., Bengio Y., Hinton G. // Nature. 2015. V. 521. No. 7553. P. 436.
  7. Van Dyk D.A., Meng X.L. // J. Comput. Graphical Stat. 2001. V. 10. No. 1. P. 1.
  8. Бузмаков А.В., Асадчиков В.Е., Золотов Д.А. и др. // Кристаллография. 2018. Т. 63. № 6. С. 1007.
  9. Tlustos L., Campbell M., Heijne E., Llopart X. // 2003 IEEE Nuclear Science Symposium. V. 3. (Portland, 2003) P. 1588.
  10. Goodfellow I., Pouget-Abadie J., Mirza M. et al. // Advances in Neural Information Processing Systems. V. 27. (Montreal, 2014). P. 1.
  11. Ronneberger O., Fischer P., Brox Th. // Internat. Conf. Medical Image Computing and Computer-assisted Intervention. (Munich, 2015). P. 1.
  12. Ledig C., Theis L., Huszar F. et al. // Proc. IEEE Conf. Computer Vision and Pattern Recognition. (Honolulu, 2017). P. 4681.
  13. Wang L.T., Hoover N.E., Porter E.H., Zasio J.J. // Proc. 24th ACM/IEEE Design Automation Conference. (Miami Beach, 1987). P. 2.
  14. Ruder S. // arXiv: 1609.04747. 2016.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (476KB)
3.

Download (335KB)
4.

Download (565KB)
5.

Download (110KB)
6.

Download (458KB)
7.

Download (271KB)
8.

Download (246KB)
9.

Download (1MB)

Copyright (c) 2023 А.Ю. Григорьев, А.В. Бузмаков