Study of the electric field density distribution in cylindrical chamber with coaxial feed of super high frequency radiation energy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The main design options for supplying SHF energy to the end wall of a cylindrical resonator were considered. 2 types of designs for coaxial feed of energy were selected and optimized, differing in the location of the coaxial line relative to the required direction of wave propagation. As a result of the calculations, the electric fields inside the cylindrical chamber and in the horn coaxial antennas were found, and the SWR of the systems was determined. A comparison in distribution of the electric field when metal objects were placed in the chamber was carried out. The areas of occurrence of a plasma SHF discharge on the surface of a cylindrical object were shown.

About the authors

A. A. Dovgan

Mechanical Engineering Research Institute of the Russian Academy of Sciences

Email: canishe@yandex.ru
Russia, 101990, Moscow

I. Sh. Bahteev

Institute of Solid State Physics of the Russian Academy of Sciences

Email: canishe@yandex.ru
Russia, 142432, Chernogolovka

S. Yu. Molchanov

Institute of Solid State Physics of the Russian Academy of Sciences

Author for correspondence.
Email: canishe@yandex.ru
Russia, 142432, Chernogolovka

V. V. Martynov

Mechanical Engineering Research Institute of the Russian Academy of Sciences

Email: canishe@yandex.ru
Russia, 101990, Moscow

B. M. Brzhozovskii

Mechanical Engineering Research Institute of the Russian Academy of Sciences

Email: canishe@yandex.ru
Russia, 101990, Moscow

E. P. Zinina

Mechanical Engineering Research Institute of the Russian Academy of Sciences

Email: canishe@yandex.ru
Russia, 101990, Moscow

References

  1. Barnes B.K., Ouro-Koura H., Derickson J. et al. // Amer. J. Phys. 2021. V. 89. No. 4. P. 372.
  2. Brcka J. // Proc. COMSOL Users Conf. (Boston, 2006) P. 431.
  3. Turkoz E., Celik M. // J. Comput. Phys. 2015. V. 286. P. 87.
  4. Бржозовский Б.М., Мартынов В.В., Молчанов C.Ю. и др. // Усп. прикл. физ. 2020. Т. 8. № 3. С. 189.
  5. Werner F., Korzec D., Engemann J. // Plasma Sources Sci. Technol. 1994. V. 3. No. 4. P. 473.
  6. Jiang Y., Hsu H.Y., Aranganadin K. et al. // Proc. IVEC-2019 (Busan, 2019). P. 1.
  7. Liu F., Wang J., Dai S. // Int. J. Numer. Model. 2011. V. 24. No. 6. P. 526.
  8. Hasegawa Y., Nakamura K., Lubomirsky D. et al. // Japan J. Appl. Phys. 2017. V. 56. No. 4. Art. No. 046203.
  9. Deng X., Takaoka Y., Kousaka H., Umehara N. // Surf. Coat. Technol. 2014. V. 238. P. 80.
  10. Kar S., Alberts L., Kousaka H. // AIP Advances. 2015. V. 5. No. 1. Art. No. 017104.
  11. Latrasse L., Lacoste A., Sirou J., Pelletier J. // Plasma Sources Sci. Technol. 2006. V. 16. No. 1. P. 7.
  12. Latrasse L., Radoiu M., Nelis T., Antonin O. // J. Microw. Power Electromagn. Energy. 2017. V. 51. No. 4. P. 237.
  13. Калиничев В.И., Калошин В.А. // Журн. радиоэлектроники. 2007. № 10. С. 23.
  14. Dehdasht-Heydari R., Hassani H.R., Mallahzadeh A.R. // Progr. Electromagn. Res. 2008. V. 79. P. 23.
  15. Mallahzadeh A.R., Imani A. // Progr. Electromagn. Res. 2009. V. 91. P. 273.
  16. Rackow K., Ehlbeck J., Krohmann U., Baeva M. // Plasma Sources Sci. Technol. 2011. V. 20. No. 3. Art. No. 035019.
  17. Хлопов Ю.Н. Радиоэлектроника и связь. М.: Знание, 1967. 50 с.
  18. Соколова Ж.М. Приборы и устройства СВЧ, КВЧ и ГВЧ диапазонов. Учебное пособие. Томск: ТУСУР, 2012. 283 с.
  19. http://npp-elmika.ru/info/index.php?id=219.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (529KB)
3.

Download (250KB)
4.

Download (609KB)
5.

Download (230KB)
6.

Download (877KB)
7.

Download (991KB)
8.

Download (472KB)
9.

Download (794KB)

Copyright (c) 2023 А.А. Довгань, И.Ш. Бахтеев, С.Ю. Молчанов, В.В. Мартынов, Б.М. Бржозовский, Е.П. Зинина