Ceramic matrix piezocomposites: microstructural features and dielectric properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new method for the fabrication of ceramic-matrix piezocomposites (CMC) ceramics/ceramics has been developed. Samples of piezoactive PZT/PZT composites with a mass concentration of components from 0 to 50% have been obtained. The study of microstructural and gravimetric features, as well as the dielectric properties of CMC, has been carried out. Finite element modeling and experimental study of CMC properties in the region of dielectric percolation transition have been performed. It is shown that the developed method for manufacturing CMC provides the formation of microhomogeneous composite structures with a uniform distribution of ceramic filler particles in a microporous piezoceramic matrix without the formation of transition regions and additional crystalline phases.

About the authors

A. N. Rybyanets

Institute of Physics, Southern Federal University

Author for correspondence.
Email: arybyanets@gmail.com
Russia, 344090, Rostov-on-Don

A. V. Nasedkin

Institute of Physics, Southern Federal University

Email: arybyanets@gmail.com
Russia, 344090, Rostov-on-Don

N. A. Shvetsova

Institute of Physics, Southern Federal University

Email: arybyanets@gmail.com
Russia, 344090, Rostov-on-Don

E. I. Petrova

Institute of Physics, Southern Federal University

Email: arybyanets@gmail.com
Russia, 344090, Rostov-on-Don

M. A. Lugovaya

Institute of Physics, Southern Federal University

Email: arybyanets@gmail.com
Russia, 344090, Rostov-on-Don

I. A. Shvetsov

Institute of Physics, Southern Federal University

Email: arybyanets@gmail.com
Russia, 344090, Rostov-on-Don

References

  1. Schmidt S. et al. // Acta Astronautica. 2004. V. 55. P. 409.
  2. Evans A.G. // J. Amer. Ceram. Soc. 1990. V. 73. No. 2. P. 187.
  3. Yang B., Chen X.M. // J. Eur. Ceram. Soc. 2000. V. 20. P. 1687.
  4. Liu Y.G., Jia D.C., Zhou Y. // Ceram. Int. 2002. V. 28. No. 1. P. 111.
  5. Смотраков В.Г. и др. // Изв. РАН. Сер. физ. 2000. Т. 64. № 6. С. 1220.
  6. Hwang H.J., Niihara K. // J. Mater. Sci. 1998. V. 33. P. 549.
  7. Malic B., Kosec M., Kosmac T. // Ferroelectrics. 1992. V. 129. P. 147.
  8. Xiang P.-H., Dong X.-L., Chen H. et al. // Ceram. Int. 2003. V. 29. P. 499.
  9. Rybyanets A.N., Rybyanets A.A. // IEEE Trans. UFFC. 2011. V. 58. No. 9. P. 1757.
  10. Shvetsova N.A., Lugovaya M.A., Shvetsov I.A. et al. // Proc. of the 2015 Int. Conf. “Physics, Mechanics of New Materials and Their Applications”. N.Y.: Nova Science Publishers Inc., 2016. P. 407.
  11. Rybyanets A.N., Domashenkina T.V., Rybyanets A. // Proc. 19th Int. Symp. ISAF-ECAPD-2010. (Edinburgh, 2010). P. 5.
  12. Rybyanets A., Motsarenko T., Eidelman A. // Proc. 2007 ICUltrasonics. (Vienna, 2007). P. 1.
  13. Rybyanets A.N. Advances in porous ceramics. N.Y.: Nova Science Publishers Inc., 2017. P. 159.
  14. Rybyanets A.N. // In: Advanced materials: manufacturing, physics, mechanics and applications. N.Y.: Springer Proceedings in Physics, 2016. P. 211.
  15. Gharehnazifam Z., Baniassadi M., Abrinia K. et al. // J. Comput. Theor. Nanosci. 2015. V. 12. No. 6. P. 1010.
  16. Hori M., Nemat-Nasser S. // Mech. Mat. 1998. V. 30. P. 295.
  17. Odegard G.M. // Acta Mater. 2004. V. 52. P. 5315.
  18. Наседкин А.В., Наседкина А.А., Нассар М.Э. // Изв. РАН. Сер. МТТ. 2020. № 6. С. 82; Nasedkin A.V., Nasedkina A.A., Nassar M.E. // Mech. Solids. 2020. V. 55. No. 6. P. 827.
  19. Oganisyan P.A., Soloviev A.N., Kudimova A.B. et al. // Mater. Phys. Mech. 2018. V. 37. No. 1. P. 16.
  20. Kudimova A.B., Nadolin D.K., Nasedkin A.V. et al. // Mater. Phys. Mech. 2020. V. 44. No. 3. P. 392.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (115KB)
4.

Download (4MB)
5.

Download (81KB)

Copyright (c) 2023 А.Н. Рыбянец, А.В. Наседкин, Н.А. Швецова, Е.И. Петрова, М.А. Луговая, И.А. Швецов