About the precursors defects influence on structural and optical properties of borosilicate glass containing rare-earth ions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The results of an analysis of the structural and luminescent properties of Ce, Gd codoped aluminoborosilicate glasses are presented. It is shown that the luminescence intensity of oxygen-deficient centers increases with the simultaneous embedding of Ce, Gd ions and changes non-linearly with their concentration. This phenomenon correlates with the process of non-linear change of the glass polymerization and the number of highly symmetrical positions of Gd3+-ions. The codoping effect is explained by the coexistence of different structural positions of codopant ions in the aluminoborosilicate glass matrix and their interaction with intrinsic defects of the glass matrix.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Е. Malchukova

Ioffe Institute

Хат алмасуға жауапты Автор.
Email: e.malchukova@mail.ioffe.ru
Ресей, Saint Petersburg

V. Levitskiy

“R&D Center for Thin Film Technologies in Energetics” LLC

Email: e.malchukova@mail.ioffe.ru
Ресей, Saint Petersburg

N. Tyurnina

I. V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences

Email: e.malchukova@mail.ioffe.ru
Ресей, Saint Petersburg

Z. Tyurnina

I. V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences

Email: e.malchukova@mail.ioffe.ru
Ресей, Saint Petersburg

Әдебиет тізімі

  1. Мальчукова Е.В. Структурная эволюция допированных оксидных стекол под действием ионизирующей радиации. Дисс. … д-ра физ.-мат. наук. Иркутск: Иркутский гос. ун-т, 2016. 276 с.
  2. Мальчукова Е.В., Теруков Е.И. // Изв. РАН. Сер. физ. 2022. Т. 86. № 7. С. 956; Malchukova E.V., Terukov E.I. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 7. P. 797.
  3. Hosono H., Abe Y., Kinser D.L. et al. // Phys. Rev. B. 1992. V. 46. No. 18. P. 11445.
  4. Malchukova E., Boizot B., Ghaleb D., Petite G. // J. Non-Cryst. Solids. 2006. V. 352. No. 4. P. 297.
  5. Malchukova E., Boizot B., Petite G., Ghaleb D. // J. Non-Cryst. Solids. 2008. V. 354. No. 30. P. 3592.
  6. Meera B.N., Sood A.K., Chandrabhas N., Ramakrishna J. // J. Non-Cryst. Solids. 1990. V. 126. No. 3. P. 224.
  7. McMillan P. // Amer. Mineral. 1984. V. 69. No. 7-8. P. 622.
  8. Iton L.E., Turkevich J. // J. Phys. Chem. 1977. V. 81. No. 5. P. 435.
  9. Simon S., Ardelean I., Filip S. et al. // Solid State Commun. 2000. V. 116. No. 2. P. 83.
  10. Kliava J., Edelman I., Potseluyko A. et al. // J. Magn. Magn. Mater. 2004. V. 272—276. Art. No. E1647.
  11. Brodbeck C.M., Iton L.E. // J. Chem. Phys. 1985. V. 83. No. 9. P. 4285.
  12. Бреховских М.Н., Солодовников С.П., Моисеева Л.В. и др. // Неорг. матер. 2018. Т. 54. № 7. С. 753; Brekhovskikh M.N., Solodovnikov S.P., Moiseeva L.V. et al. // Inorg. Mater. 2018. V. 54. No. 7. P. 713.
  13. Amossov A.V., Rybaltovsky A.O. // J. Non-Cryst. Solids. 1994. V. 179. P. 226.
  14. Bunker B.C., Tallant D.R., Kirkpatrick R.J., Turner G.L. // Phys. Chem. Glass. 1990. V. 31. No. 1. P. 30.
  15. Mysen B.O., Frantz J.D. // Eur. J. Mineral. 1993. V. 5. No. 3. P. 393.
  16. Mysen B.O., Frantz J.D. // Contrib. Mineral. Petrol. 1994. V. 117. No. 1. P. 1.
  17. Неволина Л.А., Королева О.Н., Тюрнина Н.Г., Тюрнина З.Г. // Физ. и химия стекла. 2021. Т. 47. № 1. С. 29; Nevolina L.A., Koroleva O.N., Tyurnina N.G., Tyurnina Z.G. // Glass. Phys. Chem. 2021. V. 47. No. 1. P. 24.
  18. Neuville D.R. // Chem. Geol. 2006. V. 229. No. 1-3. P. 28.
  19. Мальчукова Е.В., Непомнящих А.И., Буазо Б., Теруков Е.И. // Физ. и химия стекла. 2018. Т. 44. № 4. С. 430; Malchukova E.V., Nepomnyashchikh A.I., Boizot B., Terukov E.I. // Glass Phys. Chem. 2018. V. 44. No. 4. P. 356.
  20. Мальчукова Е.В., Тюрнина Н.Г., Тюрнина З.Г., Теруков Е.И. // Физ. и химия стекла. Т. 48. № 5. С. 527; Mal’chukovа E.V., Tyurnina N.G., Tyurnina Z.G., Terukov E.I. // Glass Phys. Chem. 2022. V. 48. No. 5. P. 363.
  21. Malchukova E. // Mater. Res. Bull. 2022. V. 152. Art. No. 111847.
  22. Мальчукова Е.В., Буазо Б., Теруков Е.И. // Изв. РАН. Сер. физ. 2020. Т. 84. № 7. С. 938; Malchukova E.V., Boizot B., Terukov E.I. // Bull. Russ. Acad. Sci. Phys. 2020. V 84. No. 7. P. 770.
  23. Мальчукова Е.В., Буазо Б., Трапезникова И.Н. и др. // Изв. РАН Сер. физ. 2019. Т. 83. № 3. С. 334; Malchukova E.V., Boizot B., Trapeznikova I.N. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. № 3. P. 277.
  24. Ожован М.И. // Письма в ЖЭТФ. 2004. Т. 79. № 12. С. 769; Ojovan M.I. // JETP Lett. 2004. V. 79. No. 12. P. 632.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Diffraction pattern of synthesized Ce, Gd-codoped ABS glass (25Gd/75Ce).

Жүктеу (93KB)
3. Fig. 2. Distribution of elements in Ce, Gd-co-doped ABS glass (25Gd/75Ce) according to scanning electron microscopy data in mapping mode: (a) Si Kα1, (b) O Kα1, (c) Na Kα1,2, (d) Al Kα1, (e) C Kα1,2, (e) Zr Lα1, (g) Ce Lα1, (h) Gd Lα1.

Жүктеу (813KB)
4. Fig. 3. Raman spectra of ABS glasses codoped with Ce, Gd ions: (a) 1 — 25Gd/75Ce, 2 — 50Ce/50Gd, 3 — 5Gd/25Ce, and undoped (4) upon excitation with λex = 532 nm (Nd-YAG laser). (b) Change in the region of Qn bands with the concentration ratio (CeO2/CeO2 + Gd2O3), which is a characteristic of the degree of polymerization of the silicate glass stack.

Жүктеу (179KB)
5. Fig. 4. EPR spectra of co-doped ABS glasses (1 — 25Gd/75Ce, 2 — 50Ce/50Gd, 3 — 75Gd/25Ce) depending on the ratio of rare-earth co-dopants (a). The ratio of highly symmetric Gd3+ positions in ABS glass as a function of the ratio of co-dopant concentrations (CeO2/CeO2+Gd2O3) (b).

Жүктеу (220KB)
6. Fig. 5. Luminescence spectra of co-doped (1 — 25Gd/75Ce, 2 — 50Ce/50Gd, 3 — 75Gd/25Ce) and undoped (4) ABS glasses upon excitation with λex = 244 nm (Ar+ laser) (a); inset — luminescence spectra with time resolution: 1 — d = 100 ns, G = 50 ns, 2 — d = 150 ns, G = 9 ms, excitation λex = 266 nm (Nd: YAG laser). Luminescence spectra of Ce- (1) and Eu-monodoped (2) and codoped (3 — 25Gd/75Ce and 4 — 75Gd/25Ce) ABS glasses upon excitation with λex = 244 nm (Ar+ laser) (b). Luminescence intensity of CDC in ABS glass as a function of the ratio of codopant concentrations (CeO2/CeO2+Gd2O3) (c).

Жүктеу (202KB)

© Russian Academy of Sciences, 2024