Processing data of a pulse thermal physics experiment using Python

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An algorithm has been developed and original software has been created for obtaining and post-processing an array of experimental data. The method of controlled pulsed heating of a wire probe has been used. The heat transfer in liquid binary media and their phase diagrams in the region of short-term superheated states has been studied. The Python program was tested by analyzing 1250 files containing more than 107 values.

Full Text

Restricted Access

About the authors

А. А. Gubin

Ural Federal University; I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: artyom.gubin@vk.com
Russian Federation, Ekaterinburg; Ekaterinburg

А. А. Marchukova

I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences

Email: artyom.gubin@vk.com
Russian Federation, Ekaterinburg

I. I. Povolotskiy

The Institute of Thermal Physics of the Ural Branch of the Russian Academy of Sciences

Email: artyom.gubin@vk.com
Russian Federation, Ekaterinburg

D. V. Volosnikov

The Institute of Thermal Physics of the Ural Branch of the Russian Academy of Sciences

Email: artyom.gubin@vk.com
Russian Federation, Ekaterinburg

References

  1. Skripov P.V. // Energies. 2022. V. 15. No. 12. Art. No. 4440.
  2. Паршакова М.А., Липнягов Е.В. // Изв. РАН. Сер. физ. 2022. Т. 86. № 2. С. 215; Parshakova M.A., Lipnyagov E.V. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 2. P. 158.
  3. Лексин М.А., Ягов В.В., Забиров А.Р. и др. // ТВТ. 2020. Т. 58. № 3. С. 393; Lexin M.A., Yagov V.V., Zabirov A.R. et al. // High Temp. 2020. V. 58. No. 3. P. 369.
  4. Онуфриев С.В. // Изв. РАН. Сер. физ. 2018. Т. 82. № 4. С. 430; Onufriev S.V. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 4. P. 372.
  5. Котов А.Н., Лукьянов К.В., Сафонов В.Н. и др. // Приб. и техн. эксперим. 2020. № 6. С. 133.
  6. Котов А.Н., Старостин А.А., Шангин В.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 11. С. 1547; Kotov A.N., Starostin A.A., Shangin V.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 11. P. 1580.
  7. MакКинни Уэс. Python и анализ данных. М.: ДМК Пресс, 2023. 536 с.
  8. Скрипов П.В., Старостин А.А., Волосников Д.В. // ДАН. 2003. Т. 390. № 2. С. 192; Skripov P.V., Starostin A.A., Volosnikov D.V. // Dokl. Phys. 2003. V. 48. No. 5. P. 228.
  9. Волосников Д.В., Поволоцкий И.И., Скрипов П.В. // Письма в ЖТФ. 2021. Т. 47. № 22. С. 21; Volosnikov D.V., Povolotsky I.I., Skripov P.V. // Tech. Phys. Lett. 2022. V. 48. No. 1. P. 15.
  10. Volosnikov D.V., Povolotskiy I.I., Igolnikov A.A. et al. // J. Phys. Conf. Ser. 2018. V. 1105. Art. No. 012153.
  11. Рютин С.Б. // Приб. и техн. эксперим. 2021. № 5. С. 152; Rutin S.B. // Instrum. Exper. Tech. 2021. V. 64. No. 5. P. 781.
  12. Rutin S.B., Igolnikov A.A., Skripov P.V. // J. Engin. Thermophys. 2022. V. 31. P. 664.
  13. Волосников Д.В., Поволоцкий И.И., Старостин А.А., Скрипов П.В. // ТВТ. 2021. № 2. С. 384 // Volosnikov D.V., Povolotsky I.I., Starostin A.A., Skripov P.V. // High Temp. 2021. V. 59. No. 2–6. P. 283.
  14. Volosnikov D.V., Povolotskiy I.I., Skripov P.V. // J. Eng. Thermophys. 2023. V. 32. No. 1. P. 14.
  15. Volosnikov D.V., Povolotskiy I.I., Skripov P.V. // Appl. Thermal Eng. 2024. V. 236. Art. No. 121532.
  16. Rutin S.B., Galkin D.A., Skripov P.V. // Thermochim. Acta. 2017. V. 651. Р. 47.
  17. Skripov P.V., Bar-Kohany T., Antonov D.V. et al. // Int. J. Heat Mass Transf. 2023. V. 207. Art. No. 123970.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Raw files of changes in probe temperature T(t) (a) and its time derivative (b) in hexane at atmospheric pressure. The boiling point t*, marked with an arrow, corresponds to a characteristic break in the dT(t)/dt dependence.

Download (35KB)
3. Fig. 2. Software block diagram.

Download (33KB)
4. Fig. 3. Software graphical interface for determining FD (lines of achievable superheating and critical parameters) using water as an example: initial thermogram data (top), values of their time derivatives (bottom).

Download (78KB)
5. Fig. 4. Instantaneous heat transfer coefficient into an aqueous solution of polypropylene glycol (PPG): (a) software graphical interface, example of determining the HTC into an aqueous solution with 20 wt. % PPG; (b) comparison of the HTC into the initial components of the aqueous PPG solution and into the samples (the numbers correspond to the wt. % content of PPG in water).

Download (46KB)

Copyright (c) 2024 Russian Academy of Sciences